Revisiting Rollbacks on Smart Contracts in
TEE-protected Private Blockchains

Systex 2024 workshop

Chen Chang Lew, ETH Zurich
Christof Ferreira Torres, ETH Zurich
Shweta Shinde, ETH Zurich

Marcus Brandenburger, IBM Research
8 July 2024

Privacy meets Blockchain

- Shared, immutable ledger
- Recording transactions and tracking assets
- All transactions and data are visible and clear to participants

-~ What if data are sensitive?
- Hospital, clinic data

- Research Institute
- Company confidential data
-~ How can we protect data privacy?
- Modern cryptography
-~ Homomorphic encryption, multi-party computation, zero-knowledge proof
- Hardware-based Trusted execution
~ Trusted Execution Environment (TEE)

Hardware-aided Isolation.

Which protects the code and data from unauthorized access or modifications

Data confidentiality

Execution integrity

Protected even against a malicious high privileged software (OS)

Remote Attestation

Example:
Intel SGX
AMD SEV?

ARM TrustZone?

Intel SGX

"https: //www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
Zhttps://www.amd.com/en/developer/sev.html) B
3https: //www.arm.com/technologies/trustzone-for-cortex-m#: ~: text=Arm%20TrustZone%20technology%20is%20used, Learn%20More

.
.
.,
.
.
Untrusted Trusted ‘ Trusted
E- __________ E :::2 lirusted function ! e]
' 1
. 0 o M|l VO
A " . ' | o ———
ECreate enclavei ! Sxsdits 5 : ECaII functon @ { Execute \g
1 1]
BRI RN ™o
| Calltrusted |) i Return |} . ' '
! functon |} Nosooaze S E i ® @) ey ','
1] 2™\ ™"\ i H e e
U R 631 | R R
! : SR I I |
Il i . 1 1
] ; Enclave ! i__________}
.
$ Guest Operating System (VM)
Operating System : Operating System
.

arm

Non-Trusted

software

data

hardware’

Trusted

software

o

hardware

debug

Q: Does applying TEE solves the privacy
problem of blockchain?

|

* Ordering Service’ 0

Hyperledger Fabric'

v
Peer | Block & Txn

An open-source permissioned

blockchain framework : = Validator
Enclave

support for smart contracts in th
form of chaincode 1. Invoke Chaincode

Client | -
Fabric Private Chaincode (FPC)? > leim Pesponss

An extension that enables the R omt S RO
execution of smart contracts in a 3b. Return Endorsement
secure enclave provided by TEEs

v

A 4

“Plchaincode

A

Ledger

2. get_state

world state: {
Alice: "Enc(Data_A)",
Bob: "Enc(Data_B)",

} world state

r_______]

| w

Peer ‘ Peer | Peer }(7

https: / /www.hyperledger.org/use/fabric
Zhttps://github.com/hyperledger/fabric-private-chaincode

Wait ... maybe there is a problem ...

Malicious peer can give
back the old version of
the encrypted data.

And this may break the
confidentiality of the
application.

b

» Ordering Service

|

1. Invoke Chaincode

Client

3. Return Response

3b. Return Endorsement

| v

}

world state: { L,
Alice: "Enc(Data_A)",
Bob: "Enc(Data_B)",

" Enclave

4

Peer | Block & Txn
Validator

o)

h 4
Ledger@

world state

Peer ‘ Peer [Peer

Contributions

= Feasibility Analysis

= Solution Prototyping and Implementation

= Experimental Evaluation

Function:
Add User
Remove User
Lock New Secret
Reveal Secret

Authlist: [Alice]

Secret: Null

Bob

1. AddUser: Bob
LockSecret: Secret_A

Authlist: [Alice, Bob]

Secret: Secret_A

Bob

Authlist: [Alice, Bob]

Secret: Secret_A

1. AddUser: Bob
LockSecret: Secret_A

2. RevealSecret: Secret_A

- &
- o

Alice Bob

Authlist: [Alice]

Secret: Secret_B

1. AddUser: Bob
LockSecret: Secret_A

2. RevealSecret: Secret_A

3. RemoveUser: Bob
LockSecret: Secret_B

- &
- o

Alice Bob

1. AddUser: Bob
LockSecret: Secret_A

Authlist: [Alice]

Secret: Secret_B

3. RemoveUser: Bob
LockSecret: Secret_B

o)
-

Alice

Demo: https://www.loom.com/share/e3dca62f8df849229e2c6414fd3742897sid=473acda1-92ac-4ad6-89c4-ddb2f5786dd5

2. RevealSecret: Secret_A

4. RevealSecret: (Failed)

J
BSN

Bob

DEMO

Rollback Attack! Secret Keeper

Action AuthList Secret

* Alice (Lock) o Secret A * [Alice, Bob] Secret A

Rollback Attack! Secret Keeper

Action AuthList Secret
* Alice (Lock) © Secret A *[Alice, Bob] Secret A

°Bob (Reveal) o (Success) * [Alice, Bob] Secret A

Action AuthList Secret
Alice (Lock) o Secret A
Bob (Reveal) o (Success)

Alice (Remove) o Bob

Action AuthList Secret
Alice (Lock) o Secret A
Bob (Reveal) o (Success)
Alice (Remove) o Bob

Alice (Lock) o Secret B

Action AuthList

Alice (Lock) o Secret A
Bob (Reveal) o (Success)
Alice (Remove) o Bob

Alice (Lock) o Secret B

Bob (Reveal) o (Succeis‘ |

Demo: https://www.loom.com/share/e540bf6395f94ab8ba547bd43942d063?sid=b32de7ea-e5d7-43ef-9e06-bf11b3cfcoff

Secret

DEMO

Q: How can we overcome this issue?

Solution for rollback attack on TEE

NS wenet

*Sinisa Matetic et al. “ROTE: Rollback Protection for Trusted Execution”. In: Pro- ceedings of the 26th USENIX Conference on Security Symposium. SEC’'17.

ROTE?

Enclave DB3

1

3C. Priebe, K. Vaswani, and M. Costa, “EnclaveDB: A Secure Database Using SGX,” in Proc. IEEE Symposium on Security and Privacy (SP), 2018.

Strawman approach: Single Key Value Storage (SKVS)

~ We only store a single key in KVS
- Advantages:

=~ Naive to Implement.
- Disadvantages:

=~ Performance drop as the application state gets larger
= Concurrent transactions result in conflicts (which may impact performance badly)

Instead of doing this, We do this,

Data in worldstate: Data in worldstate:

{ {

“Data”:
“Alice”: “Enc Alice’s data”, ¢

“Encrypted of both alice & bob objects”
0 “Bob”: “Enc Bob’s data”,) 0
} }

21

Having an extra enclave Chaincode enclave

to track the ledger and -
store the integrity Chancode Chaincode Ledger Blockchain
metadata of the KVS. library enclave state
Advantages: etState
o g 0 » | getState()
O(1) verification on KVS >
value

Disadvantages: I I

Original FPC's v1.0 RPC getMeta() =

didn't implement due to Integrity

maintenance metadata

difficulties. . TTTTTmTmTmTTT

M. Brandenburger, C. Cachin, R. Kapitza and A. Sorniotti, "Trusted Computing Meets Blockchain: Rollback Attacks and a Solution for Hyperledger Fabric," 2019 38th Symposium on Reliable Distributed Systems (SRDS), Lyon,

France, 2019, pp. 324-32409, doi: 10.1109/SRDS47363.2019.00045.
2https://www.edgeless.systems/products/ego/

Our Approach

[
N\ ' 4

@

[‘ Boardcast Block

Update & query :

» Ordering Service J

Verify Merkle \
Path .

O(log n) (n = # of data) Invoke C
Merkle

Invoke Chaincode:

O(m) (m = # of peers)

Require Merkle Root from all C"‘D‘

peers before invoke chaincode

Query for 7
Merkle Root

Fabric Peer\

h 4

Block & Txn
Validator

Get State ->
Value + MPath

C with
Root : = :
PC Chai k
EbcSiiaincads Fig Chaingcode En¢lave
—-b[shim B
[chaincode]
» shim <
‘ Enclave
Endorsement
validation
[Enclave Registry Chaincode

|
Update Merk}e_‘
Component

How we maintain the merkle tree

Root: Hagcperar

» Each Leaf contain Each o e]

Key Value Pair from \

wordstate. Node: Hep Node: Hgr Node: Haw
» During Get State, / / \\ / \\
Retu n Leaf + rel‘ated Node: Hy Node: Hg Node: Hp Node: Hp Node: Hg Node: Hg Node: Hg Node: Hy

Merkle Path

Leaf: Ty Leaf: Tg | Leaf: T¢ \ Leaf: Tp Leaf: Tg Leaf: T Leaf: Tg Leaf: Ty

25

v

—>{Ordering Service%
Addition Step:

< A4
(0. Query Merkle Root) - AgreeﬁK"V Enclave ’ Peer BI\C;C:_(d&thn
. d aligator
(1a. Agree Merkle Root) 0. Query Merkle Root L_‘ Enclave ‘
(2b. Verify value) _ 1. Invoke Chaincode with M b ik e
Client *---3 haincodel—>" get_state v ‘
(10. Update Merkle Tree) SRS, egpanss - { (Led {)
““““““ 2a. Return v N > 9%GH

|
________ | ob. Verilyv = MPath

Modify Step: 3b. Return Endorsement : Feg e 10. Updat

(1. Invoke CC with M) : : . Merkle Tree Me}mg T?'; ~orld state

(2a. Return Value & MPath) K LA

g 4 Peer Peer | Peer
Merkle Tree = Merkle Tree = Merkle Tree

l)]?.l‘“’\ ~ Component | Component = Component

Trusting Computing Base (TCB) Size

Performance Impact

Security Analysis

Own Enclave Enclave STUB Client SDK

Fabric Peer
(Outside TCB)

component (Inside TCB) (Outside TCB)
(inside TCB)

SKVS 0 141 0

TLE 6700+ 162 0

Merkle 0 534 105

Shows how many lines of code (LoCs) added for each solution

Throughput and Latency for Solutions vs. Number of Clients

—4— Native Throughput T
801 -$-- Native Latency T [6000
MTA Throughput 1
All Solution reach -+~ MTA Latency / 5000
saturation at 128 client TLE Throughput 1
. _ 601 TLE Latency
MTA perform just as good = 2000
as Native FPC = £
TLE perform decrease as = §
. N = g
faster as the # of client g Reaa
increase 2 =
|_
F2000
201
-1000
OA

1 2 4 8 16 32 64 128 256
Number of Clients

Test on # of peers.
(Expectation: Peers++, Latency++, MTA will become worst)

Throughput and Latency for Solutions vs. Number of Peers

7041 —— Native Throughput
-$-- Native Latency 3500
4+ MTA Throughput
Native: linear latency increase 60{ ~+— MTA Latency
. ~— TLE Throughput
. 1 3000
!VITA. superlinear latency ,\ TLE Latency
increase. (because we query Q)
each peer 1-by-1) & A0 5
. o 12500 £
TLE: Still perform the worst 2 o
S 401 g
=} ©
o -2000 =
=
|_
301
-1500
Ly 11000

Number of Peers

40| WEE Native fww: SKVS mmm MTA == TLE
v
[on
@ 301
MTA: perform as good as Native B
[®)]
TLE: has the worst performance 3
< 10/
SKVS: performance drop as txn At
number increase "
Read & Write the whole data for T
each action. A Native ¢ SKVS mmm MTA
More Data -> More Time to 800 1
decrypt & encrypt = ooolooc
‘E’ 600 ooooooc
> o000
Q o o
= 000
8 400 oo
B °°°°°
o0o0o
200- ooooo
0°0°°
0 o o

20000 30000
Number of requests

Full Article

Revisiting Rollbacks on Smart Contracts in TEE-protected Private Blockchains

Christof Ferreira Torres
ETH Ziirich
christof-.torres@inf.ethz.ch

Chen Chang Lew*
ETH Ziirich
lewchenchang @ gmail.com

Abstract—Blockchain technology offers decentralized secu-
rity but fails to ensure data confidentiality due to its in-
herent data replication across all network nodes. To address
these confidentiality challenges, integrating blockchains with
Trusted Execution Environments (TEEs), such as Intel SGX,
offers a viable solution. This approach, by encrypting all
data outside the SGX enclave and making them unrecog-
nizable to untrusted network nodes, ensures secure process-
ing of data and computations within TEEs. Fabric Private
Chaincode (FPC), an enhancement of Hyperledger Fabric,
demonstrates this integration by securing smart contracts in
enclaves, thereby enhancing confidentiality. However, FPC’s
reliance on states stored on the blockchain introduces vulner-
abilities, especially to rollback attacks. This work provides
a detailed analysis of rollback attacks in FPC, evaluates
existing protection mechanisms, and proposes a solution: a
Merkle Tree approach implemented in an FPC application
named Secret Keeper. Through experimental validation, this
solution shows significant security enhancements against
rollback attacks within FPC contexts.

Shweta Shinde
ETH Ziirich
shweta.shinde @inf.ethz.ch

Marcus Brandenburger
IBM Research
bur@zurich.ibm.com

This paper delves into potential solutions within the
FPC framework. The original FPC documentation sug-
gests a strawman approach of consolidating all values
under a singular state, a method that proves secure but
inefficient and unscalable. It also discusses a Trusted
Ledger Enclave solution, which was excluded from the
FPC RFC [5] due to high maintenance costs and subopti-
mal performance. We propose a Merkle tree-based solu-
tion that retains up to 95% of FPC’s original throughput
without rollback protection, demonstrating a minor com-
promise in efficiency for significantly improved security.

Our contributions are multifaceted, extending from
theoretical exploration to practical application:

« Feasibility Analysis: We assess the practicality
of existing rollback protection mechanisms from
literature in the context of the FPC, considering
their efficiency and effectiveness in Section 2.6.

« Solution Prototyping and Implementation: We
implement the Single Key-Value Storage and
Trusted Ledger Enclave solutions as described in

SKVS - Small TCB (141 LoC) - Bad performance in concurrent

- Easy to implemented transactions

- no Fabric Peer’s Modification - Always load all data in the enclave
TLE - Transparent for the clients. - Mediocre Performance (peak 65% of

- In theory good performance (O(1) Native FPC)

for retrieve & update) - Need to edit Fabric Peer’s code

- Relatively large TCB (6000+, plus
fabric peer code)

MTA - Small TCB (500+ LoC) - Need to edit Fabric Peer's code
- Great Performance (95% of Native - Need to edit Client side SDK
FPC) - Cannot integrate with old system.

- Good for application
dependent on High Read
Operation.

- Good for integrate with old
system. (Just require to update
the chaincode)

- Good for new application
that require rollback
protection.

80

Artifact links (feel free to play around and break it XD)

34

Reference Slides

~ Intel SGX:
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html

= AMD SEV: https://www.amd.com/en/developer/sev.html

~ ARM Trustzone:
https://www.arm.com/technologies/trustzone-for-cortex-m#: ~:text=Arm%20TrustZone%20technology%20is%2
Oused,Learn%20More

- Hyperledger Fabric: https://www.hyperledger.org/use/fabric

~ Fabric Private Chaincode: https://github.com/hyperledger/fabric-private-chaincode

~ SGX Monotonic counters:
ttps://www.google.com/urlZsa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwijb8I3dr8D_AhVe 7sIHTj3
hgQFnoECACQAQ&uUrl=https%3A%2F%2Fcdrdv2-public.intel.com%2F671564%2Fintel-sgx-platform-services.pdf&
usg=A0vVaw3Cbr31cwfEXIgDGYZoXsgr

- ROTE: Sinisa Matetic et al. “ROTE: Rollback Protection for Trusted Execution”. In: Pro- ceedings of the 26th
USENIX Conference on Security Symposium. SEC’17. Vancouver, BC, Canada: USENIX Association, 2017, pp.
1289-1306. isbn: 97819319714009.
https: //www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic

~ Trusted Ledger Enclave (TLE): M. Brandenburger, C. Cachin, R. Kapitza and A. Sorniotti, "Trusted Computin
Meets Blockchain: Rollback Attacks and a Solution for Hyperledger Fabric,” 2019 38th Symposium on Reliable
Distributed Systems (SRDS), Lyon, France, 2019, pp. 324-32409, doi: 10.1109/SRDS47363.2019.00045.
https://ieeexplore.ieee.org/document/9049585

- Formal Verification: 'Saharsh Agrawal and Karen Tu. “Enabling Verifiable Execution of Distributed Secure
Enclave Platforms”. In Berkeley EECS-2021-153,
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-153.html 35

- Merkle Tree: https://en.wikipedia.org/wiki/Merkle tree

0|2

