duet: Combining a Trustworthy Controller with a Confidential Computing Environment

Istemi Ekin Akkus, Ivica Rimac 08.07.2024 7th Workshop on System Software for Trusted Execution (SysTEX 2024) NOKIA BELL LABS

Trusted Execution Environments (TEEs)

Confidentiality and integrity protection

- Confidential Virtual Machines
 - ✤ AMD SEV-SNP, Intel TDX
- Application Enclaves
 - ✤ Intel SGX, ARM TrustZone

➢Protect data in-use

• Confidentiality of data during computation

Enable remote attestation
 Integrity of code computing over data

Base root of trust on hardware
 No trust in the cloud provider or operator

Verifiable Computation

Verifiable Computation with TEEs – A Comparison

Confidential Virtual Machines (CVMs) run entire operating systems in the TEE

Pros

- Lift and shift with no change to applications
- Flexible and easy-to-use
- Access to confidential GPUs (e.g., NVIDIA H-100)

Cons

- Remote attestation integrity only for initial state
- Owner has full control (i.e., "insider threat")

Owner Verifiable Computation

Application Enclaves run only certain parts of the application in the TEE

Pros

- Minimized trusted computing base
- Transparent integrity of code via remote attestation (i.e., no changes after start)

Cons

- Requires re-architecting and splitting applications into "trusted" and "untrusted" code
- No access to specialized hardware

3rd Party Verifiable Computation

Verifiable Computation with TEEs – A Guideline

Q1. Whose data is it?

Q2. Who is doing the computation?

\succ Same entity:

"Owner self-run": use confidential VMs for its advantages

\succ Not the same entity:

"as-a-Service provider": use application enclaves to ensure trust for users

Goal

To combine the **transparent integrity** of application enclaves with the **flexibility and ease-of-use** of confidential VMs

Agenda

• Motivation

- Background & Assumptions
 - CVM integrity
 - Actors
 - Threat Model
- duet Overview
- Prototype Implementation

CVM Integrity Checks

- Attestation report covers only the firmware
 - But not the rest of boot binaries
- Measured boot approaches with other boot binaries
 - QEMU and OVMF patches: kernel, kernel command line, initRAMdisk
 - vTPM as a Secure VM Service Module (SVSM)
- "Read-only disk" hosting the confidentiality-offering service
 - Revelio [Middleware'23]
 - Confidential Containers (CoCo)

Gives only the initial CVM state integrity

- Good for "Owner verifiability"
- Not good for "3rd party verifiability"

Gives runtime integrity

- Good for "3rd party verifiability"
- Not good for "flexibility" and "maintenance"

Actors

Service Owner

Offers a service with confidentiality protections

 "Confidential/Private Machine Learning" Uses the confidentialityoffering service

Service User

• Has confidential/private assets but does not want to run the service

Infrastructure Provider

Supplies the underlying hardware infrastructure with up-to-date TEEs

• No other interaction with service owner and user

Threat Model & Assumptions

- Attacks on TEE hardware out-of-scope
- Infrastructure provider not interfering with disk integrity
 - Can be combined with integrity protection solutions (done once per OS image)
- Publicly available OS and software packages
 - Well-known Ubuntu image, Ubuntu packages
- Non-public software packages are from well-known sources
 - NVIDIA GPU drivers signed by NVIDIA
- Publicly available confidentiality-offering service code

Agenda

- Motivation
- Background & Assumptions
- duet Overview
 - High-level overview
 - Service Owner workflow
 - Service User workflow
- Prototype Implementation

duet Overview Approach in a nutshell

Goals

- Flexibility and ease-of-use for service owner
 - Need CVMs for specialized hardware like confidential GPUs
 - Need updates to the OS packages and service for new functionality
- CVM's runtime integrity
 - Service owner == CVM owner
 - How do we prevent the service owner from installing anything malicious after the initial boot?

Idea

1. An application enclave gives transparent runtime integrity

➢ SGX MRENCLAVE value

2. Let the application enclave run a controller application to "own" the CVM

• Service owner =/= CVM owner

duet Combining best of both worlds

Owning the CVM Trustworthy controller operation

- Provisioning resources for the CVM
 - From cloud provider or on-premise server
- CVM access only possible by the controller
 - Controller generates an ephemeral SSH key while
 provisioning the CVM; other login options are disabled

The SSH key stays inside the SGX enclave [confidential]

► Controller has full control of CVM

Deploying and maintaining the service possible via the controller API

Deploying and Maintaining the Confidential Service Service owner workflow

runtime state

Confidential Service Operation

Checking the runtime integrity of the CVM by service users

Agenda

- Motivation
- Background & Assumptions
- duet Overview
- Prototype Implementation
 - Controller & API client

Prototype Implementation

- Generic controller implementation
 - ~1K lines of Python code + gramine libOS for containerization
 - Controller API client with ~425 lines of Python code
- Initial set of CVM commands for attestation report
 - With Microsoft Azure Attestation
- Provider-specific provisioning commands
 - AMD SEV-SNP and Intel TDX on Microsoft Azure
- Standard Ubuntu 22.04 as CVM image
 - Designated for confidential computing by Canonical

Limitations & Future Work

- Microsoft Attestation Service and firmware closed source
 - No direct access to the TEE
 - Other providers allow access to the TEE hardware
- Disk integrity assumed after initial boot
 - SNPGuard may help
 - Protection would be applied once per OS image; not per deployed service

Summary

► Alternative approach for verifying CVM runtime integrity

- An application enclave as the CVM owner/controller
- Transparent integrity checks for 3rd party verifiability
- Flexibility and ease-of-use for service owner

Confidential VMs

- Lift-and-shift
- Flexible
- Confidential GPUs

• Transparent integrity

• No insider threat

Application Enclaves

Source code available: https://github.com/Nokia-Bell-Labs/tee-duet

\mathbf{O}

NO<IA BELL LABS