
© 2024 Nokia1

PraaS: Verifiable Proofs of 
Property as-a-Service with 
Intel SGX 

Istemi Ekin Akkus, Ivica Rimac, Ruichuan 

Chen

08.07.2024

7th Workshop on System Software for 

Trusted Execution (SysTEX 2024)



© 2024 Nokia2

The future is full of datasets



© 2024 Nokia3

The future is an Industry 4.0 ecosystem
Ecosystem for 

monetization of datasets

DatasetDataset
Dataset UserDataset Owner



© 2024 Nokia4

The future is full of software supply chain attacks

CVE-2024-3094 

Severity: 10.0

Colonial 

Pipeline



© 2024 Nokia5

Ecosystem for 

monetization of datasets

DatasetDataset

Motivation for an Industry 4.0 Ecosystem

1. Wants to advertise 

properties of their assets 
effectively

2. Wants to protect the 

confidentiality of their 
assets

Wants to check properties of 

the assets before buying

• Statistics, formatting, provenance, 

internal consistency, privacy, 

copyrighted material, ...

Dataset UserDataset Owner



© 2024 Nokia6

Additional Requirements & Goal

Utility is 

application-

dependent

➢ Customizability 

➢ On-demand 

computation

Datasets are often 

large

➢ Scalability

Datasets can be 

streaming

➢ Low latency

Monetization is 

important

➢ Low cost

What is the minimum cost and trust to obtain the maximum performance?
- Without violating confidentiality of datasets and not breaking other requirements



© 2024 Nokia7

Goal & Idea

Provide 3rd party verifiable proofs about datasets 

with 

high scalability, low latency, low cost and “acceptable trust”

while

preserving confidentiality of datasets

Trusted Execution Environments (TEEs) in 

public clouds



© 2024 Nokia8

Agenda

- Motivation

- Background & Assumptions

- SGX Remote Attestation

- Threat Model and Assumptions

- PraaS Overview

- Evaluation



© 2024 Nokia9

SGX Remote Attestation
Ensuring the intended enclave is running

When initiated, an enclave produces an 

attestation report/quote containing:
➢Cryptographic hash of code and data 

(MRENCLAVE)

➢A signature via the attestation key of the 
hardware

Local attestation: between two enclaves on 
the same platform

Remote attestation: between a client and 

an enclave
➢ Increased confidence that the intended 

software is running in an SGX enclave 

with latest TCB version

User Platform

User Application

Enclave

Challenger (Client)

Attestation Service

1. Challenge (nonce)

4. Response (QUOTE)

5. QUOTE 
Verification

Quoting

Enclave

Platform Software

2. REPORT 3. QUOTE

Remote attestation



© 2024 Nokia10

Actors, Threat Model and Assumptions

Actors

❖ Dataset Owner: Wants to prove to others that a 
confidential dataset satisfies certain properties 

without exposing it to others

❖ Dataset User: Wants to obtain guarantees about 

datasets before purchasing and using them in 
their application

❖ PraaS Provider: Operates the necessary software 

infrastructure in a cloud setting

❖ Cloud Provider: Provides hardware infrastructure 

with standard security practices and up-to-date 
TEEs

Threat Model & Assumptions

❖ No collusion between PraaS/cloud 

provider and dataset owner/user

❖ No attacks on TEEs

❖ Instantiation with Intel SGX

❖ Supplementary protocols not in scope



© 2024 Nokia11

Agenda

- Motivation

- Background & Assumptions

- PraaS Overview

- Enclave-signed output

- Property Computation Functions (PCFs)

- Prototype Implementation and Evaluation



© 2024 Nokia12

Proof Generation
Strawman

1. Initiate SGX 
enclave

4. Send encrypted 
data & trigger 
computation

2. Receive 
attestation quote

3. Check 
attestation 

quote

5. Receive output

6. Send quote & 
output

7. Check 
attestation quote

Does not work!

Attestation result and SGX 

output are not linked 

together!

SGX-PraaS Strawman

Trusted Code

1B. Initialize and 
return report

4B. Receive and 
decrypt data

4C. Compute over 
data

5A. Return output

Untrusted 
Service Code

1A. Accept 
request and 
create enclave

2. Pass quote

4A. Pass 
encrypted data

5B. Pass output

Attestation Service

TEE



© 2024 Nokia13

Enclave-signed Output
Linking attestation with computation

SGX-PraaS

Trusted Code

1B. Initialize, 
generate an 
ephemeral 
public/private 
keypair and return 
report with public 
key

4B. Receive and 
decrypt data

4C. Compute over 
data

5A. Sign output 
and return it

Untrusted 
Service Code

1A. Accept 
request and 
create enclave

2. Pass quote 
with public key

4A. Pass 
encrypted data

5B. Pass signed 
output

Attestation Service

1. Initiate SGX 
enclave

3. Check 
attestation 
quote with 
public key

4. Send encrypted 
data & trigger 
computation

2. Receive 
attestation quote 
with public key

5. Receive signed 
output

6. Send attestation 
quote with public key 

& signed output to 
third parties

7. Check 
attestation quote 
with public key

8. Check output 
signature with 

public key from 
attestation quote

Verifiable Proof of Property:
Attestation quote with enclave public key
+ signed output

TEE



© 2024 Nokia14

Property Computation Functions (PCFs)

• Extract a desired property from a dataset

- Statistical properties, formatting, internal consistency, anonymization, 

existence of PII/copyrighted material, …

• Envisioned as a catalogue of useful functions to be 

picked from

- Examples: sampling, non-repetition + sampling, statistics, sampling + 

statistics, …

• Available to both dataset owners and potential dataset 

users

- Dataset owners inspect to check if it is leaking confidential data

- Dataset users inspect to verify it is computing the desired property

- Both can reject if not satisfied



© 2024 Nokia15

Enclave Templates

➢ Most of enclave code is generic

➢ Build scripts, declarations, common libraries

➢ Several common steps for Proof-of-Property

➢ Initialization with ephemeral public/private keypair, 
receiving encrypted data, signing output

Faster development Easier 

reproducibility

Enclave 

template

Property Computation Function = Enclave template + custom property logic

Easier 

customization



© 2024 Nokia16

Architecture Details

SGX-PraaS
(Untrusted) Service code

• Enclave initialization (1A)

• Proxying encrypted data between client and 
enclave (2, 4A, 5B)

Client code
• Attestation result check

• Signature check

Enclave code for Proof-of-Property 
computation

• General steps: pub/private keypair 
generation (1B), data decryption (4B), output 
signing(5A)

• Custom step: property extraction (4C)

System code

User-provided code

Enclave 

template

TEE

Trusted Code

1B. Initialize, 
generate an 
ephemeral 
public/private 
keypair and return 
report with public 
key

4B. Receive and 
decrypt data

4C. Compute over 
data

5A. Sign output 
and return it

Untrusted 
Service Code

1A. Accept 
request and 
create enclave

2. Pass quote 
with public key

4A. Pass 
encrypted data

5B. Pass signed 
output



© 2024 Nokia17

Agenda

- Motivation

- Background & Assumptions

- PraaS Overview

- Prototype Implementation and Evaluation

- Common operations

- Static datasets with sampling

- Streaming datasets with statistics



© 2024 Nokia18

Prototype
Implementation and evaluation setup

C/C++ implementation

• Service code (<1K + JSON library)

• Enclave templates (~1K lines of code)

• Python client (~500 lines of code)

• 4 PCFs each with ~100-225 lines of custom code

Evaluation

• Sampling for static datasets (up to 5M hashes)

• Statistics for streaming data (up to 200K integers/second)

Setup

• Azure Confidential Computing instance DC2sv3 (2vCPUs and 16GB RAM)

• With Microsoft Attestation Service

➢ Cost: ~0.16 Euro/hour

Python implementation (with gramine libOS)

• Service code with <600 lines of code

• Python client with ~400 lines of code

• 4 PCFs each with ~45 lines of custom code



© 2024 Nokia19

Common Operations
Across enclave types and dataset sizes (milliseconds), 20+ runs

• Setting up the enclave at the server

• Initiating the enclave, obtaining the attestation 
report, getting a quote, …

• Verification of the quote at the client

• Contacting the Attestation Service Provider with 

the quote

Enclave setup
Quote 

verification

Sampling ~1800 ms ~175 ms

Nonrep. + 
Sampling

~1844 ms ~174 ms

Statistics ~424 ms ~183 ms

Sampling + 
Statistics

~443 ms ~184 ms

➢Independent of 

the dataset size

➢(More or less) 

constant time

➢Depends on the 

enclave config
➢Sampling: Heap 256K 

pages, Stack 8K



© 2024 Nokia20

Sampling for Static Datasets
Client-side latencies (seconds), 20+ runs

1M 2M 3M 4M 5M

Encryption of dataset ~6.2 s ~ 12.4 s ~18.7 s ~24.9 s ~31.2 s

Transmission & waiting 

for result
~47.1 s ~94.0 s ~141.3 s ~188.3 s ~235.5 s

Property computation 

(Server-side)
~0.03 s ~0.05 s ~0.08 s ~0.11 s ~0.14 s

Signature on result 

(Server-side)
~0.02 s ~0.04 s ~0.05 s ~0.07 s ~0.09 s

Signature verification ~0.07 s ~0.14 s ~0.20 s ~0.27 s ~0.35 s

Total ~53.4 s ~106.7 s ~160.3 s ~213.6 s ~267.1 s

1 hash = 65B

- SHA256
- 0x16 encoding
- "\n"

5M hashes ~=

310 MB



© 2024 Nokia21

Statistics for Streaming Datasets
Client-side latency (milliseconds), 20+ runs, 100 batches

- Broker sends to subscribers only the batches 

with certain statistics to reduce bandwidth

- Subscribers want assurance the broker is filtering 

correctly

50K/sec 100K/sec 150K/sec 200K/sec

Proof 
latency

~211 ms ~411 ms ~620 ms ~813 ms

Batch size 195KB 390KB 585KB 780KB

Proof size <1KB <1KB <1KB <1KB

vs
➢ Near real-time 

latency

➢ Bandwidth 

reduction



© 2024 Nokia22

Summary & Open Issues

Summary 

PraaS: Verifiable proofs of dataset properties using Intel SGX

➢ Enable increased interaction among dataset owners and potential users without trust relations

➢ High performance and low latency for static and streaming datasets with low cost

➢ Easy customizability with enclave templates for C/C++ and python

➢ Source code available: https://github.com/Nokia-Bell-Labs/proof-as-a-service

Open issues

❑ Leakage of sensitive information if only interested in the property

❑ Differential privacy

❑ Inspection of property computation logic may not catch covert channels that require collusion




	Slide 1: PraaS: Verifiable Proofs of Property as-a-Service with Intel SGX 
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

