

SyncEmu: Enabling Dynamic Analysis of Stateful Trusted Applications

<u>Christian Lindenmeier¹</u>, Matti Schulze¹, Jonas Röckl¹, Marcel Busch²

¹ Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany ² École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

TEEs on COTS Android Mobile Devices

Smartphone landscape

Rich Execution Environment (REE)

Trusted Execution Environment (TEE)

TEEs on COTS Android Mobile Devices

Software components on COTS smartphones

SyncEmu: Enabling Dynamic Analysis of Stateful Trusted Applications

Motivation

• Problem: TrustZone firmware has vulnerabilities¹

Multiple reasons: complex attacker model, large TCB, memory unsafe languages,...

¹Cerdeira, D., Santos, N., Fonseca, P., & Pinto, S. (2020, May). Sok: Understanding the prevailing security vulnerabilities in trustzone-assisted tee systems. In 2020 IEEE Symposium on Security and Privacy

4

SyncEmu: Enabling Dynamic Analysis of Stateful Trusted Applications

Motivation

• Problem: TrustZone firmware has vulnerabilities¹

Multiple reasons: complex attacker model, large TCB, memory unsafe languages,...

• Static analysis is cumbersome and limited

Multiple reasons: closed-source binaries,...

 \rightarrow We need a way to dynamically analyze COTS TrustZone firmware

¹Cerdeira, D., Santos, N., Fonseca, P., & Pinto, S. (2020, May). Sok: Understanding the prevailing security vulnerabilities in trustzone-assisted tee systems. In 2020 IEEE Symposium on Security and Privacy

Challenges in Analyzing Trusted Applications

Access to COTS smartphones is locked down

Challenge #1 – Limited Introspection

- Locked-down nature of COTS smartphones
- No accessible debug interfaces
- TrustZone extensions prevent memory introspection
- → On-device dynamic analysis not feasible
- Previous work limited e.g., black-box fuzzing²

² Busch, M., Machiry, A., Spensky, C., Vigna, G., Kruegel, C., & Payer, M. (2023, May). Teezz: Fuzzing trusted applications on cots android devices. In 2023 IEEE Symposium on Security and Privacy

6

Challenge #1 – SyncEmu's Approach

Rehosting TrustZone OS Firmware

Rehosting: We execute the targeted software in an emulated environment which mimics (necessary parts of) the original device

 $\rightarrow\,$ Only rehost TZOS and TAs

Challenge #1 – SyncEmu's Approach

Rehosting TrustZone OS Firmware

SyncEmu's Rehosting Framework

Overview

9

SyncEmu's Rehosting Framework

Overview

Challenges in Analyzing Trusted Applications

Execution of CAs and TAs is intertwined

Challenge #2 – Complex CA-TA Protocols

- GlobalPlatform defines interfaces for TAs
- Custom protocols depending on use case of TA
- TA execution is highly stateful
- Previous work tried emulating NW components³
- → Rehosting NW is not feasible

³Harrison, L., Vijayakumar, H., Padhye, R., Sen, K., & Grace, M. (2020). PARTEMU: Enabling Dynamic Analysis of Real-World TrustZone Software Using Emulation. In 29th USENIX Security Symposium

SyncEmu's CA-in-the-loop Technique

Forwarding SMCs

Evaluation

Feasibility of Rehosting TZOS Implementations

Rehosting TrustedCore from Huawei's P9lite smartphone

• Minimal Bootloader: 19 assembly instructions

• Peripheral Callbacks: 18 emulated MMIO accesses

 Secure Monitor Callbacks: Hook at first SMC by TrustedCore and pause emulation

<pre>pc=0xc0013de8: SRE_HuntByName 2024-07-06 10:23:14,721 a2scripts.tc_progress_monitor [INF0] pc=0x41ddffc: REET:start_tz 2024-07-06 10:23:14,746 a2scripts.optee_secure_monitor [INF0] SMC 0xb20000000 received, handler: _handle_return_from_tzos _boot TrustedCore booted! pc=600 r0=b2000000 r1=c001fb00 r2=c001fc60 r3=2 r4=40004 r5=50005 r6=60006 r7=70007 r8= 80008 r9=90009 r10=a000a r11=41f82e4 r12=41f82 e8 None christian@ThinkPad:~/Schreibtisch/PhD/syncemu\$</pre>
<pre>[2000] Client connected: 127.0.0.1:54784 [2002] Client connected: 127.0.0.1:47226 [2000] TrustedCore Release Version iCOS_MAIN_2.9.0_EVA_1.6, Nov 9 2016.18:32:24 [2000] DX_CclibInit success [2000] invalid magic: 0x000000000 [2000] ipc: bsp_ipc_init ipc init success [2000] ipc: dsp_ipc_init ipc init success</pre>
<pre>[2000] icc: param_cfg_init bsp_cfg_base_addr_get is NULL [2000] icc: bsp_icc_init chan fifo init err [2000] icc: bsp_icc_init icc init errno: 0xffffffff [2000] Error initializing runtime service icc_driver [2000] [TEEGlobalTask]1/2/1970 12:24:29.2999 TrustedCore Exe cute Successfully and jump to Linux kernel [2000] Client disconnected: 127.0.0.1:54784 [2002] Client disconnected: 127.0.0.1:47226</pre>

CA-in-the-loop

Rehosting environments are hard to evaluate because we have not ground truth

- Approach: Input-Output methodology⁴
 - \rightarrow Compare return values of on-device TEE and rehosted TEE

⁴Fasano, A., Ballo, T., Muench, M., Leek, T., Bulekov, A., Dolan-Gavitt, B., ... & Robertson, W. (2021, May). Sok: Enabling security analyses of embedded systems via rehosting. In Proceedings of the 2021 ACM Asia conference on computer and communications security

CA-in-the-loop

Rehosting environments are hard to evaluate because we have not ground truth

- Approach: Input-Output methodology⁴
 - \rightarrow Compare return values of on-device TEE and rehosted TEE
- Experiment 1: OP-TEE with QEMU's machine virt
- Experiment 2: Huawei P9lite with modified TEE Driver (~300 lines C)

	API function	OP-TEE's aesTA	TC's keymasterTA
→ Hardware emulation is the limiting factor	TEEC_InitializeContext TEEC_OpenSession TEEC_InvokeCommand TEEC_CloseSession	79 (79) 1 (1) 8 (8) 1 (1)	56 (56) 56 (56) 56 (0*) 56 (56)

⁴Fasano, A., Ballo, T., Muench, M., Leek, T., Bulekov, A., Dolan-Gavitt, B., ... & Robertson, W. (2021, May). Sok: Enabling security analyses of embedded systems via rehosting. In Proceedings of the 2021 ACM Asia conference on computer and communications security

Discussion

Limitations and Future Work

Limitations:

- Physical smartphone required for CA-in-the-loop (low scalability)
- TZOS and TA binaries required (may be encrypted)
- DMA and unique hardware secrets

Discussion

Limitations and Future Work

Limitations:

- Physical smartphone required for CA-in-the-loop (low scalability)
- TZOS and TA binaries required (may be encrypted)
- DMA and unique hardware secrets

Future Work:

- Finding strategies to emulate peripherals easier and more accurate
- Extend with other TZOS implementations
- Integrate security testing (e.g. fuzzing)

Thanks for your attention!

SyncEmu: Enabling Dynamic Analysis of Stateful Trusted Applications

Christian Lindenmeier FAU Erlangen-Nürnberg christian.lindenmeier@fau.de Matti Schulze FAU Erlangen-Nürnberg matti.schulze@fau.de Jonas Röckl FAU Erlangen-Nürnberg jonas.roeckl@fau.de Marcel Busch EPFL marcel.busch@epfl.ch

- Open source rehosting framework for proprietary TrustZone images
- Showcasing CA-in-the-loop technique
- Identify future directions for research in TEE rehosting

https://github.com/syncemu/syncemu