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Background



Intermittent computing (ImC)

● Energy harvesting systems
○ Small capacitor
○ Charge/Operate/Die cycle

● Checkpointing
○ To ensure forward progress
○ Save volatile MCU state to non-volatile memory (NVM)
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Security issues[2]

● Checkpoint snooping
○ Secret keys
○ Intermediate state of crypto primitive

● Checkpoint spoofing
○ Change checkpoint content
○ Control device operations

● Checkpoint replay
○ Replace checkpoint with a previous one
○ Jump to any point in the software program



Arm Trustzone for Cortex-M

● Hardware isolation
○ Secure (S) / non secure (NS) world
○ Memory mapped division
○ Orthogonal to MPU (privilege level)

● Access rule
○ Secure code can access all memory
○ Non secure code only non-secure memory

● Flow
○ Boot in secure world
○ Perform security configurations
○ Switch to non secure
○ Calls to secure world for secure services
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State of the Art



On Securing Persistent State in Intermittent Computing[4]

● Checkpoint of non-secure world
○ Data copied in secure world
○ Stored in FLASH memory
○ No cryptographic protection of checkpoints

● Limitations
○ MCU state not checkpointed (only arbitrary data)
○ Device lifetime limited by FLASH wear



Secure Intermittent Computing Protocol (SICP)[5, 6]

● MSP430
○ Internal FRAM memory (non-volatile)

● Implementation
○ hardware attacks on internal memory
○ cryptographic protection of checkpoints
○ Secret key and nonce in Tamper-Free memory

● Limitations
○ Intellectual property (IP) encapsulation to simulate Tamper-Free memory
○ Full security chain is not discussed based on attacker capabilities

■ e.g. changes to firmware



Contribution

● Trustzone isolation
○ Protection against firmware attacks
○ Smaller TCB

● Target platform
○ Consider full security chain
○ Use only commercially available hardware

● Ensure device lifetime
○ FLASH wears out

● Checkpoint utility
○ Real implementation



Proposed solution



Target platform

● STM32U5 MCU
○ Cortex-M33 core

● Security features
○ ARM TrustZone
○ Random number generator
○ AES hardware accelerators
○ Readout protection (debug lock)

● External FRAM memory
○ For checkpoint storage
○ SPI connection

Image from [7]



Security objectives

● Information security
○ Integrity, authenticity, and confidentiality of checkpoints

● Freshness
○ To prevent checkpoint replay

● Atomicity
○ Possible power loss during checkpoint creation
○ System in cannot enter undefined state at startup

● Disruption of forward progress is out-of-scope



Attacker model

● Assumption
○ Checkpoint stored on external memory chip

● Attacker
○ Can read/write content in external memory
○ Can run arbitrary code in non-secure world
○ Can control device power (start - stop device)

● Limitations
○ Cannot read/write internal memory via hardware attacks
○ Cannot run arbitrary code in secure world
○ No side channel attacks (e.g. differential power analysis) 



Security chain

● Root of trust
○ hardware key in system FLASH (internal)

● Firmware protection
○ lock debug features (RDP=2)
○ secure boot (optional)

● Checkpoint of secure world (only)
○ Handled by secure firmware
○ On external memory (FRAM)
○ Cryptographic protection of checkpoints
○ Checkpoint key (encrypted) and nonces in secure FLASH



Implementation



Checkpoint utility

● Routines
○ SAVE and RESTORE
○ Similar to SICP

● Entered via system call (SVC)
○ Switch to privileged mode
○ Important CPU registers saved in stack 

● SAVE
○ Creates checkpoint (stack + global variables)

● RESTORE
○ Checks and loads checkpoint in memory after reboot
○ Simulates exception exit from SAVE



Custom memory layout

● FLASH_CKP
○ circular buffer to store nonces
○ erase operation expensive
○ also avoids FLASH wear

● .DATA divided into
○ .data (associated data)
○ .data.conf (plaintext)
○ .data.drivers
○ driver_buf stores copy of 

drivers (plaintext)

● same layout for .BSS
● CRYPTOBUF for ciphertext



SAVE routine (checkpoint creation)

1. Drivers copied to buffers
○ Routine may change them

2. Random 96 bit value
○ Initialization vector (IV) for 

AES-GCM

3. AES-GCM (IV, ad, pt)
○ 3 calls with increasing IV
○ for all .data, .bss and stack
○ Stack only as ad

4. Result
○ Ciphertext in CRYPTOBUF
○ 3 authentication tags



SAVE routine (checkpoint creation)

5. Save checkpoint to FRAM
○ 3 authentication tags
○ Associated data
○ CRYPTOBUF (ciphertext)

6. Save nonce in FLASH
○ IV (96 bit) + address of 

checkpoint in FRAM (32 bit)
○ This validates new checkpoint 

and invalidates previous one

7. Manage nonce buffer
○ Crear previous FLASH page 

when starting new one



Experiment 1

● Variable application size
○ Simulated with buffer in .bss

● Confidentiality
○ Either full confidential or non 

confidential

● Checkpoint overhead
○ Linear increase with application 

size
○ Encryption adds overhead
○ SAVE slower than RESTORE



Experiment 2

● Contribution of single operations
○ With fixed application size (2048 bytes)
○ Either full confidential or non-confidential

● Results
○ Main overhead from SPI R/W
○ SAVE slower due to memory programming 

and external memory operations
○ Slow driver copy (poorly optimized)

(  ) means confidential results
* averaged over # of nonces in page



Conclusion

● SICP (save + restore)
○ No protection: < 1 ms (data in FRAM)
○ Protection: comparable to our results (44 ms)

● Energy consumption would be a better metric
○ We use higher clock cycles (160 MHz vs 8MHz)
○ But waste cycles waiting for peripherals (RNG, crypto unit, SPI)

● Device lifetime
○ 52 years (nonces in FLASH,  1 checkpoint/s)



Future works



Future works

● Save non-secure world
○ requires design of secure service

● Saved state
○ Confidentiality for stack
○ Save Heap
○ Save Peripheral state

● Performance optimization
○ DMA to parallelize SPI operations

● Power analysis
○ Also in real use case



Thanks for your attention
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