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Abstract—Due to the nature of monolithic kernels, a driver’s
vulnerability always results in a vulnerable kernel, as disas-
trous examples show. Some research aims to solve this issue
by isolating drivers from the main kernel. The most promis-
ing approaches rely on virtualization techniques. However,
as they usually require driver and kernel modification, they
can only be applied to open-source drivers. As closed-source
drivers are also standard these days, e.g., for GPUs or
anti-cheat tools, we propose BarriCCAde, a new design for
isolating even closed-source drivers from the kernel. Most
notably, BarriCCAde allows driver isolation without adding
a hypervisor to the TCB. Relying on upcoming confidential
computing techniques, we only add small-scale memory pro-
tection components to our TCB. Contemporary approaches
focus on deciding which of the kernel’s resources the driver
may access and how they can be synchronized between the
kernel and the driver. However, one aspect mainly ignored
is cases in which the driver misuses kernel resources it can
access to attack the system, e.g., by crafting malicious inputs
for kernel functions. To cover such cases, we integrate an
eBPF-based filter into our system architecture, which allows
a fine-granular specification of which kernel-level resource
can be accessed in which way. We believe that BarriCCAde
is an important step towards isolating future closed-source
drivers and, thus, strengthening the confidentiality, integrity,
and availability of future kernels.

1. Introduction
With Linux, MacOS, and Windows, most modern

devices run a monolithic kernel, usually written in unsafe
languages like C. This risk, combined with the enormous
codebases of modern operating systems (OS), results in
a de facto guarantee of OS vulnerabilities. While modern
OSs deploy many security mechanisms to mitigate this
risk, new vulnerabilities are found frequently, with, for
example, 532 CVEs being reported for Linux alone in
2023 [22]. Crucially, many of these vulnerabilities do not
stem from the kernel itself but from drivers, which make
up approximately 70% of the Linux source code [11]. As
these OSs are monolithic by design, a vulnerable driver
means that exploiting a vulnerable driver can lead to a full
system compromise, which implies that all data managed
by the OS is at risk. Many researchers have already
observed this, leading to a long history of techniques that
aim to isolate a driver from the rest of the kernel.

1.1. Related Work

While some of the earliest approaches discussed the
usage of micro- and nanokernels to isolate drivers [8],
[15], they never really caught on in commodity OSs.

Another string of research focusses on isolating drivers
from the kernel in monolithic OSs by using virtualization
techniques [14], [17], [24]. Typically, such systems em-
ploy a hypervisor on which two VMs are executed, one
for the driver and the kernel each. From this base design,
we observe two different categories of approaches.

The first hosts a fully-featured second kernel in the
“driver-VM“ which has access to hardware needed by
the driver and shares the driver’s data with a second VM
hosting the main system [7], [24]. Here, the driver has
direct access to all the kernel resources needed for its
execution (e.g., kernel functions and data structures) but
has the downside of requiring modifications to the driver
and kernel source-code to enable the synchronization of
the computed data. Moreover, having a higher resource
consumption, especially in regards to memory.

The second category tries to run the driver as “bare
metal“ as possible in the second VM to reduce its mem-
ory footprint [2], [9], [16], [21]. However, this leads to
numerous challenges, especially the synchronization of
needed kernel resources between the kernel and the now
“kernel-less“ VM. Contemporary research, primarily the
string of research around Narayanan et al., has suggested
some solutions to this problem. Starting in 2019, the
authors introduced so-called Lightweight Execution Do-
mains (LXDs) [2], a concept to enable kernel subsystems
to execute in a, from the kernel isolated, environment.
A microkernel added to the commodity OS manages
IPC calls between the LXDs and the isolated kernel,
which can be used to request capabilities (e.g., access
to memory regions or function calls). Which capabilities
can be requested and how the resources of capabilities are
synced between the two VMs is manually specified via an
interface definition language (IDL), which compiles to the
glue-code needed to actually synchronize the resources.
The glue-code is then added to the driver’s source-code
and compiled into it. The concept was expanded multiple
times. First, they propose replacing the microkernel with
a full hypervisor and to add new lightweight isolation
mechanisms [21]. Subsequently, to use the driver modules
LLVM intermediate representation to generate automatic
IDL descriptions and lastly in a work-in-progress paper to
also implement additional security features like heap isola-
tion or single ownership of the shared resources [9]. While
only briefly mentioned by the authors, proxy interfaces
generated from the IDL could be used to prevent some
accesses to shared resources which would result in cyclic
dependencies. The technique could also be used to only
allow accesses of kernel functions with certain parameters.
However, the authors do not go into how proxies can be
generated for this use case, leaving the implementation of
the actual parameter-based filtering vague.



1.2. Contributions

While the research on LXDs offers the most promising
techniques for isolating malicious drivers from the main
kernel, we identify three main issues. First, all tools
assume access to the source code of the drivers, which
prevents a holistic solution (I1). The authors require this
to implement the context switches between the VMs and
resource sharing. However, we believe this can also be
achieved in a partial black-box scenario where the driver
is closed-source. To do this, hardware faults can be used
to initiate the context switches and the kernel’s side of
the driver-kernel interface can be used to generate the
rules for resource synchronization. While we believe that
this is a step in the right direction, it still leaves the
door open for attacks against the hypervisor used for the
isolation. As hypervisors also tend to have vulnerabilities
due to the size and complexity of their source code,
adding this component also adds another risk to the system
(I2). Depending on the size and complexity of the driver,
this risk may outweigh the risk reduction by isolating
the driver. While this could not be avoided for a long
time, novel TEE architectures like ARM’s Confidential
Compute Architecture (CCA) allow for the isolation of a
system’s OS from an untrusted hypervisor. Therefore, ap-
plying ARM CCA to the ideas of LXDs can reduce one of
their significant drawbacks. Lastly, while the recent work
introduces mature concepts for synchronizing resources
between the kernel and isolated domains, no design offers
solutions for enabling the filtering of malicious usage of
validly shared resources (I3).

To that end, we present BarriCCAde which, in sum-
mary, offers the following solutions for the issues listed
above.
(I1) BarriCCAde is, to the best of our knowledge, the

first tool, which will be able to run any kernel mod-
ule, including closed-source drivers, completely bare-
metal in virtual machines, without any modification
to the driver. For this, we present a novel technique
for deciding on the driver’s resource synchronization
requirements relying on the kernel’s debug informa-
tion.

(I2) BarriCCAde leverages ARM CCA and its concept of
realms to minimize the increase of the TCB.

(I3) BarriCCAde presents a solution for preventing the
malicious usage of shared resources. We achieve this
by leveraging eBPF to filter illegal resource access.

2. Background

2.1. ARM CCA

For a long time, research on trusted execution envi-
ronments focused on protecting information on a run-
ning system from a compromised OS (e.g., Intel SGX,
ARM TrustZone). With the rise of cloud computing, novel
technologies focus on preventing an untrusted hypervisor
from accessing or modifying information inside a VM.
Solutions for this have been presented in recent years
by most CPU manufacturers, with AMD SEV [23], Intel
TDX [10], and ARM’s CCA [18]. While ARM CCA
contains an architecture for the entire chain of trust of
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Figure 1. Overview of the system architecture of ARM CCA and the
different system states, also called worlds. A hypervisor can issue
RMIs 1 to request actions from the RMM, while a R-VM can issues
RSIs 2 to call the RMM.

cloud systems, its backbone is the extension of its CPU
architecture with the so-called Realm Extension. The ex-
tension expands on the long-standing separation of ARM
TrustZone systems in the secure and normal world by in-
troducing two new system states, the realm world and root
world, as shown in Figure 1. On most ARM systems, EL3
is the highest privilege level and reserved for the Monitor
(often implemented by the “Trusted Firmware(TF)-A“
[20]). While EL3 used to be assigned to the secure world,
with ARM CCA it is now moved to its own system state,
the so-called root state. Additionally, the realm world
contains with the Realm Management Monitor (RMM)
another firmware component running at R-EL2,

ARM CCA employs the concept of separating the
management of software components from their protec-
tion. This is implemented by having the normal world hy-
pervisor create, schedule, and destroy VMs but forwarding
all requests through the RMM, which handles the protec-
tion of the VMs’ resources. This protection is primarily
achieved with a new hardware component, the Granule
Protection Table (GPT). The GPT, only writeable from
the root world, holds an entry for every physical memory
page of the system, where each entry is associated with the
physical address space (PAS) it belongs to (i.e., normal,
secure, realm or root world). On every memory access,
the system inputs the physical memory address calculated
by the MMU in this GPT and checks which PAS this
page belongs to. This information is checked against the
current system state to decide whether access will be
allowed. Table 1 shows which PAS can be accessed in
which system state. A “Y“ implies that a page assigned
to a certain security state (x-axis) can be accessed when
the system is in the security state defined on the y-axis.
In general, pages belonging to the realm world can only
be accessed if the system itself is in the realm world or
the root world.

When a hypervisor creates a new realm VM, it allo-
cates all the needed resources (e.g., memory) and man-
agement structures like it would with any “normal“ VM
and then requests the protection of the resources from the
RMM. This is achieved with the so-called Realm Man-
agement Interface (RMI), a collection of Secure Monitor
Calls (SMC) routed to the RMM by the firmware. The
RMM then creates a new realm for this VM and, with



TABLE 1. OVERVIEW OF ARM CCA PAS.

Security State Normal Secure Realm Root
Normal Y N N N
Secure Y Y N N
Realm Y N Y N
Root Y Y Y Y

the help of the Monitor, assigns all of the VM’s memory
pages to the realm world via the GPT. With this, any
attempt from the hypervisor to access the memory from
a realm is blocked by hardware. Furthermore, a realm
can request services from the RMM or the hypervisor by
issuing so-called Realm Service Interface (RSI) calls, also
implemented via SMCs (shown at 2 in Figure 1).

ARM provides formal verification for the correctness
of the reference implementations of the RMM and the
aspects of TF-A concerning realms, meaning that even
though they have full access to all of a realm’s infor-
mation, they are highly unlikely to contain vulnerabili-
ties [13], [18]. Therefore, when considering the topic of
driver isolation via virtualization, ARM CCA could be
used to assign the VMs to realms so that a hypervisor
can not break the confidentiality and integrity of the
system. Considering I2, this means that in such a case
the hypervisor does not effectively increase the systems
TCB (in regards to confidentiality and integrity), which
makes CCA a promising approach.

2.2. Extended Berkeley Packet Filter

The extended Berkeley Packet Filter (eBPF) [12] is the
successor of the Berkeley Packet Filter (BPF), designed
initially to implement user-defined filtering rules for net-
work traffic. eBPF expands on this to implement a full
virtual machine with a RISC-like architecture. It hooks
into various kernel subsystems and allows the execution
of user-defined code in the privileged context of the kernel
at runtime. To achieve this securely, eBPF sandboxes the
code and uses a verifier that analyses it before approving
it for just-in-time compilation. This verifier uses elaborate
checks to make sure that the program does terminate,
has a finite complexity and does not break out of the
sandbox. To achieve this, eBPF disallows certain features
that prevent the verifier from executing its checks, like
unbound loops, unsafe memory accesses via uninitialized
variables. To improve the usability of eBPF, the LLVM
frontend can generate eBPF bytecode as a target, meaning
that any LLVM-based programming language can be used
to create eBPF programs. While initially designed for
filtering network traffic, it can be theoretically used to
filter any stream of information/requests, like in the case
of driver isolation, requests from the driver-VM to kernel
resources.

3. Threat Model

We assume two attack scenarios. Firstly, we assume
an attacker who can execute arbitrary code in a driver’s
closed-source kernel module. We identify three attack
vectors which can be used for this. Firstly, it is possible
that the user unknowingly loads a driver which is in itself

malicious, e.g., because it hides as anti-cheat software. In
the other two scenarios a vulnerable driver is exploited
either by userspace malware to escalate its privileges or
by malicious hardware (e.g., specifically designed DMA
devices [6]). We assume the driver is the kernel level’s
only source of malicious behavior, meaning the other
kernel components are considered trusted.

To align with ARM CCA’s design, we also include
the scenario, where an attacker has achieved full control
the hypervisor used to isolate the driver. Furthermore, we
assume that the firmware components of the ARM CCA
software stack (TF-A and RMM) can be trusted. Lastly,
we consider side-channel attacks and attacks requiring
physical access out of scope (e.g., fault injection attacks).

4. Design and Implementation

The goal of BarriCCAde is to offer an isolated en-
vironment for closed-source drivers, preventing any ma-
licious behavior of these from affecting the main kernel
and userspace. Inspired by Narayanan et al. [21], we aim
to enforce five aspects of security:

(R1) Data Structure Confidentiality, meaning that the
driver can not read confidential data structures from
the kernel that are not required for the driver to run

(R2) Data Structure Integrity, meaning that the driver
cannot modify confidential data of the kernel

(R3) Function Call Integrity, meaning that the driver can
only execute a subset of the kernel functions required
to function correctly

(R4) Synchronization Safety, meaning that the function
calls and data structures synchronized between the
driver and the kernel can be prevented from being
used with values and parameters that may lead to ma-
licious behavior. However, it must be noted that we
only refer to securing inputs used for synchronized
resources and do not include securing the interface
from vulnerabilities based on race conditions.

(R5) Minimal TCB increase, meaning that an implemen-
tation for isolating drivers does not significantly in-
crease the system’s TCB.

While R1-R3 are defined in a similar way by Narayanan et
al., R4 expands on the requirements by not only defining
which resources may be accessed by a driver, but also how
the driver may access the resources. This is an important
aspect of security since the misuse of resources actually
needed by the driver can still be used to exploit the kernel,
e.g., by triggering a kernel panic by intentionally calling
a function with specific parameters, resulting in a crash.
While this is also briefly mentioned in the most recent
work-in-progress successor of KSplit [9], we showcase
a concrete implementation. Furthermore, we expand this
concept applying it to the global data structures of the
kernel. R5 focusses on scenarios, where the driver iso-
lation is implemented by adding other higher privileged
software components (e.g., a full hypervisor) with poten-
tially higher complexity than the driver. While isolating
drivers aims to reduce the kernel’s TCB effectively, the
addition such software may increase the TCB to an extent
even higher than in a scenario where the system does not
utilize such isolation techniques.



4.1. BarriCCAde’s Approach

Figure 2 presents an overview of the architecture of
BarriCCAde, designed for modern ARM platforms that
implement the realm extension. In detail, we use the
extension’s hardware primitives while also implementing
the entire runtime logic of BarriCCAde and its modules
in the new firmware component, the RMM. The main
runtime logic is implemented in the BarriCCAde-Modules
in the RMM, and more minor additions for the setup
phases are done to the system’s kernel and the hypervisor
(in our case, KVM) used. However, the components in the
hypervisor are not assumed to be be trusted, aligning with
the threat model. The setup is used to run the main kernel
in a virtualized environment (K-VM), which the RMM
then protects. Any potential driver is also loaded in a new
VM created by the hypervisor and protected by the RMM,
thus guaranteeing integrity and confidentiality even in the
face of an untrusted hypervisor. To achieve this, the Linux
procedure to load kernel modules is modified; Figure 3
presents an overview of the new process implemented.
The following three subsections describe the steps of the
process.
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Figure 2. Overview of how BarriCCAde is embedded into the ARM
CCA components. Additions are made to the RMM, the Kernel and
KVM. It must be noted that the additions from KVM are not considered
trusted.

4.2. Resource Synchronization

When a driver is loaded, BarriCCAde generates a
so-called sync config for this driver to decide how to
synchronize the resources (i.e., the parameters and re-
turn values used for kernel functions and data structures)
needed by the driver. To decide which resources need to
be synchronized in which way, we design the workflow
shown in step 1 of Figure 3.

In general, most approaches for resource synchroniza-
tion require the source code of both the kernel and the
driver to be isolated, as they assume that both aspects are
needed to specify rules for the synchronization. The sum
of resources accessible can be interpreted as an interface
that the kernel presents to potential modules, which are
also linked against this interface after compilation. Even
if a driver offers resources to the kernel, it has to adhere
to the way the kernel accesses such resources, which also
can be interpreted as an interface provided by the kernel.

For effective synchronization of resources, this inter-
face is usually analyzed to generate the ruleset. However,
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Figure 3. Overview of the three steps of BarriCCAde’s kernel-module
loading mechanism.

this interface is solely defined by the kernel, including
information on how resources can be accessed and their
assumed properties (e.g., data structure layouts, size, con-
stness, lifetimes). We believe that instead of having to
rely on the user of the interface (i.e., the driver) and its
provider (i.e., the kernel), the interface definition specified
by the provider is enough to derive rules for how resources
must be synchronized between the driver and the kernel.
Furthermore, we believe that even without having access
to the driver’s source code, the information provided in
its ELF is sufficient to achieve this in an efficient way.

Therefore, to analyze the kernel-driver interface, we
only assume the kernel to be open source. While analyzing
the entire source code may be beneficial for future work,
we only extract the kernel’s interface from it. For this,
we use the DWARF debug information from the kernel,
which can be extracted from the Linux kernel if it is
compiled accordingly. While we can derive all rules for
synchronization from the kernel’s interface, doing this for
every resource is unnecessary, as generating rules for those
required by the driver is sufficient. For this, the driver’s
interface usage must be analyzed, i.e., which resources are
required.

One way to achieve this is by extracting the ELF infor-
mation from the driver, including the list of its symbols.
This list is then searched for undefined symbols, which
means that the module calls a function or accesses a data
structure that is provided by the kernel. With this, we gen-
erate the list of kernel dependencies of the kernel module.
For each dependency, we check the DWARF entries and
generate a sync config by checking the return values and
parameters. Suppose a parameter is of a primitive data
type. In that case, we can synchronize it by copying the
kernel’s register to the register in the driver-VM’s saved
context before returning to it. If a parameter is a pointer,
we must decide on its semantics (i.e., “normal“ pointer, a
pointer to an array, ...). While the problem is not decidable
in general, with more profound analysis, most of these
semantics can be decided. If a parameter is a pointer, it
can be synced by coping bytes equal to the size of its
targeted data type to a memory region accessible by the
driver. We call this the sync region, which will be further
discussed in Section 4.4. In this case, we also have to



modify the register storing the parameter to point to the
location of the synchronized data in the sync region.

Suppose a pointer points to a composite data type
(i.e., a struct). In that case, we can unroll the DWARF
information of the type (recursively) to get the exact
layout of it and copy the needed information accordingly.
For example, if a parameter points to a structure that
stores two pointers, we can follow the pointers, copy
the needed information, and adjust the struct’s pointers
accordingly before copying the whole structure to the
sync space and adjusting the parameter to point to this
copy of the structure. After a function call, resources
may also be synchronized back to the source if it does
not contain constant pointers. The creation of such rules,
where possible, is handled automatically by a simple user-
space script. The same approach is also used for global
variables, with the only difference being that the adjusted
pointer is not stored in a function parameter but instead
at the memory location or register storing the original
pointer.

If the script is unable to generate a configuration for
a function call (e.g., a parameter is a void ⋆), it lists
these functions in the output. While, for now, the operator
may manually create a sync config for such calls, we
believe that by analyzing the kernel’s source code in a way
comparable to KSplit’s approach [16], even such ambigu-
ous cases can be resolved in most cases, leaving only a
small amount to be specified manually. However, requiring
manual configuration is in line with the latest research for
approaches focussing on open-source drivers, as these also
require manual intervention in some cases [16].

Finally, the sync configs generated from this approach
are then uploaded to BarriCCAde in the RMM as raw C-
structures via shared memory. BarriCCAde then uses these
configs to synchronize calls to functions and kernel data
structures on demand.

4.3. Function Call Filtering

While our synchronization mechanism already pre-
vents the driver-VM from directly accessing or modifying
resources that it must not access, R4 also requires consid-
ering the situation where a resource that is synchronized
with the driver is miss-used maliciously, e.g., by executing
a valid function with specific parameters leading to a
kernel panic or information leakage.

To tackle this issue, we integrate an eBPF interpreter
into BarriCCAde in the RMM (see Section 4.5) and im-
plement the workflow shown in step 2 of Figure 3. The
eBPF interpreter executes a user-defined program before
every synchronization step. For the input of this program,
BarriCCAde uses the address of the resource and, in the
case of a function, its parameters, and in the case of a
data structure, the value it shall be set to. Furthermore,
the program is always given the synchronization rules for
this address. To support the creation of the filter rules, the
output of the sync config generator may be used, as this
output already lists all the functions and data objects used
by the driver and which may be considered for filtering.

As a modern driver accesses a huge number of kernel
resources, we believe that there are multiple approaches
to aid in specifying the rules, especially in regards to how
the rules can be specified by whom.

1) Presets: There are cases in which drivers most likely
use certain events in the event space of a function for
malicious purposes. For example, while a driver may
require functions to map certain physical memory
regions for MMIO and DMA, it is highly unlikely
that a driver has benign reasons to use such functions
to map the physical memory of the kernel’s text
segment. Therefore, general presets can be generated
to protect the kernel from common attack patterns.

2) Automatic Derivition: To protect the kernel from
malicious drivers that may try to crash the system, re-
sulting in a DoS, we believe that source-code analysis
of the kernel can be used in some cases to generate
rules preventing this. For example, if the analysis
shows that a function contains a call to the kernel’s
panic function, we can backtrack the control flow to
potentially decide on a set of parameters leading to
this panic. By generating rules that filter out function
calls with these arguments, we can automatically
protect the kernel from some DoS attacks.

3) Vendor-Defined Rules: While most vendors pub-
lishing closed-source tools aim to protect their in-
tellectual property by not publicly sharing the source
code, the driver’s usage of the kernel’s interface can
always be analyzed by, e.g., tracing components of
the kernel. Furthermore, publishing the interface’s
usage generally maintains the confidentiality of the
driver’s inner workings. Consequentially, it could be
considered for driver vendors to specify the rules
themselves, meaning that even if their driver contains
a vulnerability, the running system will not be com-
promised. In cases of a potentially malicious vendor,
such rules should, be reviewed by a third party to
prevent rules that allow malicious behavior.

4.4. Loading the Driver

After loading all the configurations to the RMM, the
kernel can then load the driver as a BarriCCAde-driver,
as shown in step 3 of Figure 3, by placing the driver’s
relocated elf in a shared memory region of the hypervisor
and the kernel (marked light gray). Next, the kernel issues
an RSI to the RMM with the location of the driver in the
shared memory and a hash of it, which forwards the RSI
as a HOSTCALL to the hypervisor, which then creates a
new VM, placing the driver’s elf in it. The driver-VM is
then also protected by the RMM, which also uses the hash
provided by the kernel to prove its integrity in the context
of a potentially malicious hypervisor. Furthermore, the
hypervisor allocates additional memory regions for the
driver-VM, containing its stack and regions for synchro-
nizing resources (i.e., the sync region). While a copy of
the driver is loaded in its realm, the original driver is
still loaded normally in the Linux kernel. However, its
physical pages are marked as inaccessible in the GPT
(GPT_GPI_NO_ACCESS), meaning that any call to the
driver from the kernel (starting with its init) call is
trapped to BarriCCAde in the RMM. Furthermore, if the
driver is executing and a kernel function is called or
the address of a kernel data structure is accessed, these
addresses are not mapped into the VM. Therefore, this
results in a page fault, trapping it to BarriCCAde in the
RMM.



4.5. Runtime

Figure 4 shows the flow of its execution upon loading
a driver. First, BarriCCAde synchronizes the the parameter
for the init function of the driver and then returns to the
driver-VM at the according address. The driver executes
until a kernel resource is accessed, e.g., a function or a
global variable. As the function’s address is not mapped
into the driver-VM, this results in a trap to BarriCCAde in
the RMM. Here, the function’s address, parameters, and
sync config are fed into the filter module of BarriCCAde,
which contains the eBPF mentioned above. The filter
then executes the kernel-provided program and checks the
function call for malicious parameters. Similarly, if the
requested resource is a kernel object, the address of the
object and the value it shall be set to is used as input
for the filter. If the resource request passes the filter, it
is forwarded to the sync module. Here, the sync configs
provided to the RMM are checked for the address of the
requested resource. The request is rejected if no configu-
ration is provided, and execution continues at the driver’s
next instruction. Otherwise, the resource is synchronized
according to the provided configuration, and in case of a
function call, execution is resumed at the kernel’s desired
function. Suppose the kernel returns from the function
call itself or calls driver functions at some point. In that
case, the execution is again trapped to the RMM (as this
results in accessing memory pages marked as inaccessible
in the GPT), where the filtering and synchronization are
executed again, this time in reversed order. The combi-
nation of these two techniques results in the driver-VM
being unable to read or write data structures of the kernel,
addressing R1 and R2, and to execute kernel functions
it does not require, addressing R3. Furthermore, as the
filter also allows the detection of malicious usage of valid
resources via runtime-provided eBPF programs, we also
adhere to R4. Using eBPF programs for filtering also
means that the same program, or parts of it, can be reused
for different drivers, increasing this design’s portability.

Finally, we use a version of the eBPF filter that
is formally verified for correctness [25], which means
that, other than the synchronization module and some
RSI/RMIs forwarding, we add no considerable amount of
unverified code to the TCB, adhering to R5.

5. Status

The tool presented is a work in progress. It will be
further developed to offer a mature and complete solu-
tion comparable to the designs around LXDs. Currently,
BarriCCAde can synchronize simple function calls be-
tween a simple dummy-driver and host and the filtering
functionality via eBPF is already in place and working.
We have achieved this by adding 2195 single lines of
code (SLOC) to the TCB, out of which 1722 contain
the formally verified eBPF interpreter (calculated with
cloc 2.0 [5]). Compared to the 228120 SLOC of the
RMM (out of which 209473 SLOC stem from external
dependencies of the RMM like mbedtls), we only add
0.96% to the TCB.

The current focus of the project is to improve the syn-
chronization capabilities of BarriCCAde regarding com-
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plex data structures and opaque parameters. For this we
also consider the approaches of LXDs [2] and LVDs [21].

As there is no publicly available hardware imple-
menting the ARMs Realm extension, we implemented
the prototype on QEMU with custom ports for the ARM
Trusted Firmware and RMM. While this allows for fast
prototyping, QEMU cannot be used for performance mea-
surements. Another option is to use ARM’s Fixed Virtual
Platforms (FVPs) [19], which are custom emulators for
ARM’s novel architectures. Sadly, these perform very
poorly regarding their emulation speed, making them
an unfit tool for prototyping BarriCCAde. Additionally,
while cycle-accurate, timing measurements on the FVPs
are inaccurate, reducing their usability for a performance
evaluation [1], [3], [4].

Therefore, to evaluate performance aspects of Bar-
riCCAde, we plan to rely instead on microbenchmarks
running on already available ARMv8 hardware without
the realm extension. We expect BarriCCAde to intro-
duce some performance overhead introduced by effec-
tively adding two context switches to each function call
that is synchronized between the kernel and the driver.
The impact of this highly depends on the exact driver
being isolated and the amount of kernel function it calls
and how performance critical its operation is. This is
also described for the comparable designs of LXDs and
LVDs [2], [21]. Here, with the performance improvements
of LVDs the authors achieve 65% of native speeds to
nearly native speeds (99%), depending on the kind of
driver and its exact configuration (e.g., multithreading).
Moreover, we additionally introduce overhead by adding
the eBPF-based filtering mechanism. As these will most
likely only consist of simple range-checks, we expect the
overhead introduced to be negligable.

Furthermore, we will also evaluate the LoC of eBPF
code needed to effectively protect the kernel from different
attack scenarios against a real-world driver, for example,
using valid functions with malicious parameters which
would allow an attacker to comprimise kernel code.



6. Conclusion

This work explores a possible design and implementa-
tion for isolating closed-source drivers. To the best of our
knowledge, it is the first design that isolates closed-source
drivers without relying on multiple kernels. To achieve
this, we suggest a novel resource synchronization tech-
nique relying on kernel debug information. Furthermore,
we also improve on current approach by describing a
concrete solution for filtering out potentially malicious ac-
cesses of the isolated module on synchronized resources.
We achieve this by integrating a formally-verified eBPF
interpreter into our system. Furthermore, by aligning Bar-
riCCAde to the upcoming ARM CCA architecture, we
improve on other virtualization-based isolation methods
by keeping the additions to the TCB small in regards to
its confidentiality and integrity due to adding a hypervisor.
In conclusion, our concept, when matured, will offer a
solution for securely isolating drivers without additional
memory overhead or increasing the system’s TCB. Thus,
we believe that our design is an important step forward
for driver isolation in future confidential computing archi-
tectures.
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