
Minimal Partitioning Kernel with Time Protection and Predictability

Henrik A. Karlsson
KTH Royal Institute of Technology

Stockholm, Sweden
henrik10@kth.se

Abstract—We assess the effectiveness of the temporal fence
instruction, introduced by Wistoff et al. (2023), primarily in
enhancing both security and timing predictability for embed-
ded systems. Originally demonstrated to eliminate microar-
chitectural side-channels by flushing the on-core microarchi-
tectural state using the seL4 kernel, we extend the evaluation
of the temporal fence to a minimal kernel using RISC-V’s
PMP to protect applications, examining its implications for
both security and safety. Our experiments demonstrate that
by using scratchpad memory and the temporal fence, we can
improve the security and time predictability of applications
on both embedded and application-level processors. Further-
more, we find that the performance overhead introduced
by the temporal fence remains within acceptable limits for
hard real-time systems, which demonstrates the temporal
fence’s potential in securing applications against side-channel
attacks while enhancing system reliability.

1. Introduction

Embedded systems, essential to sectors like health-
care, infrastructure, and industry, are growing increasingly
complex and are driven by heightened functional and con-
nectivity demands despite facing real-time, space, weight,
and power constraints. This complexity poses risks to
both safety and security, underscoring the need for better
reliability and security tools.

Rushby introduced the separation kernel in 1981, a se-
curity kernel isolating system components to enhance fault
tolerance and enable independent security analyses [28].
The concept of separation kernel was further developed
into the partitioning kernel [29], which also isolates parti-
tions in time to address safety concerns in avionics. Side-
channel attacks, which exploit system implementations
to infer sensitive information, present significant risks to
both general-purpose and embedded systems. Traditional
kernels, including the separation and partitioning kernels,
are ill-equipped to counter these threats.

To combat such attacks, Ge et al. suggested that
new hardware mechanisms that reset the microarchitec-
tural state are needed to address intra-core side-channel
attacks [12]. Following this, Wistoff et al. introduced
the temporal fence, designed to reset a system’s on-core
microarchitectural state and eliminate associated timing
side-channel attacks [33]. Using an experimental version
of the seL4 microkernel that colors the L2 cache and
provides copies of the kernel to each security domain,
they demonstrate that the temporal fence can be used to
eliminate intra-core side-channels.

The approach of seL4, which relies on virtual memory
to color the L2 cache, may not be suitable for all use
cases. For example, the Keystone Enclave framework and
MultiZone Security separation kernel utilize RISC-V ISA
primitives such as the Physical Memory Protection (PMP)
to create trusted execution environments (TEEs) [4],
[18]. While Keystone and MultiZone are both designed
to prevent untrusted hosts or partitions from accessing a
TEE’s resources directly, they do not prevent information
from leaking via timing side-channels. To prevent such
leakage in these systems, a method without the use of
virtual memory is needed as the PMP operates below the
virtual memory layer.

Contributions. This paper explores the use of the
temporal fence not just for mitigating timing side-channel
attacks but also for improving the timing predictability
of applications. We specifically consider the use of the
temporal fence in improving the security and reliability
of systems such as Keystone and MultiZone that uses
RISC-V’s PMP for memory protection. Although our
studies were conducted on an application-grade softcore,
the findings also apply to embedded systems.

For our evaluation, we developed OpenMCZ, a min-
imal partitioning kernel based on MultiZone Security,
with the temporal fence added to mitigate timing side-
channel attacks. This kernel, alongside the programs un-
der examination, is placed within a 64 KiB scratchpad
memory to improve the timing characteristics and mitigate
memory-based off-core side-channel. Our security evalua-
tion shows that a simple partitioning kernel like OpenMCZ
can effectively eliminate timing side-channels that exploit
the on-core microarchitectural state when using the tempo-
ral fence and scratchpad memory. Furthermore, our safety
evaluation demonstrates that it is also possible to ensure
deterministic timing of tasks on a partitioning kernel when
using the temporal fence and scratchpad memory.

Lastly, we explore the impact of the temporal fence
and kernel on system performance, noting that the over-
head varies with task characteristics, reaching up to 14%
in some cases. This additional overhead may render both
soft real-time and enclave systems impractical. On the
other hand, it does not pose any significant concern for
hard real-time systems that must be scheduled according
to their worst-case execution time.

2. Background

Embedded Systems refer to computers that are specif-
ically designed to perform particular tasks within larger
systems. These systems typically have stringent demands



for real-time performance and limitations on size, weight,
and power consumption (SWaP). To guarantee reliability,
each component is usually run on a separate computer,
allowing for independent evaluation of their correctness
and timeliness. However, there is a rising demand for
integrating multiple components onto a single computer,
which can reduce the system’s overall SWaP footprint
and make room for new functionalities. Yet, such integra-
tion risks the system’s correctness and timeliness due to
potential interference between components. Additionally,
as systems become more interconnected, the demand for
robust security also increases. To ensure that an integrated
system is safe and secure, specialized OS kernels are used
to rigorously isolate components spatially and temporally
within the shared hardware environment.

Spatial Isolation refers to the concept of isolating a
component’s resources to prevent both sensitive informa-
tion and faults from propagating. Components in a dis-
tributed system are spatially isolated by default, but those
sharing the same hardware are not. For spatial isolation on
the same hardware, one can use a separation kernel. First
introduced by Rushby [28], a separation kernel partitions
the computer’s resources among components, provides
secure communication between components, and sched-
ules them. The separation kernel effectively emulates a
distributed environment, thereby granting the components
spatial isolation akin to a distributed environment.

To enforce spatial isolation, secure kernels, such as
separation kernels, must rely on hardware such as memory
management units (MMUs) or memory protection units
(MPUs). MMUs provide both memory virtualization and
protection and are used by many secure kernels to enforce
spatial isolation [7], [17], [24]. The issue with MMU is
that it introduces additional costs in terms of power, size,
performance, and jitter. Therefore, secure kernels for real-
time and resource-constrained systems often use MPUs,
which provide only memory protection but are cheaper,
simpler, and have more predictable execution time than
an MMU [9], [26], [30], [31].

Time Predictability involves accurately predicting the
timing of tasks or processes within a system. A common
metric is the worst-case execution time (WCET) used to
allocate sufficient execution time for real-time tasks so
they can meet their deadlines [14]. However, accurately
measuring the WCET of tasks is exceedingly challenging
due to modern processor complexity, dynamic behavior,
and resource interference [6], [14]. Therefore, practition-
ers typically estimate the upper bound of the WCET
and incorporate a pessimistic margin of error, which may
vary depending on the system’s complexity, ranging from
10% for simpler systems to 100% or more for more
complicated ones.

Temporal Isolation refers to safeguarding a compo-
nent’s schedulability, ensuring that it starts in time to
complete its tasks before their deadlines [29]. Effective
temporal isolation ensures that, despite any faults, a sys-
tem component does not impact the schedulability of other
components. This does not imply zero impact on their
timing but rather ensures that any impact is not severe
enough to cause failures.

Temporal isolation can be achieved through priority-
driven schedulers like Earliest Deadline First (EDF) [19]
and sporadic servers [11]. Although theoretically ideal,

their complexity [11], [21], [23], [36] often poses chal-
lenges in guaranteeing temporal isolation in practice.
Hence, simpler time-driven schedulers are commonly pre-
ferred in safety-critical real-time applications [20]. For
instance, the ARINC 653 specification for aeronautics
necessitates a partitioning kernel [27], which mandates
components to be scheduled in a cyclic executive man-
ner while allowing tasks within the components to use
alternative scheduling approaches [29].

Time Protection is about mitigating side-channel at-
tacks exploiting microarchitectural footprints of compo-
nents to infer information [15]. Ge et al. [12] outlined
five requirements for time protection: flushing the on-
core microarchitectural state; partitioning of the kernel;
deterministic data sharing; deterministic flushing of the
microarchitectural state; and partitioned interrupts. These
measures aim to eliminate side-channels that leak informa-
tion through the microarchitecture, kernel, and interrupts
for a general-purpose OS. To meet these requirements,
they identified the need for new hardware mechanisms.

Temporal Fence (fence.t) introduced by Wistoff
et al. [33] became one such hardware mechanism. The
temporal fence is an instruction that resets the on-core
microarchitectural state, such as L1 cache and branch pre-
dictors, to prevent intra-core side-channels from exploiting
said state. Meanwhile, they excluded off-core state such
as that of the L2 cache for performance reasons, which
must therefore be dealt with separately.

They demonstrate that the temporal fence is effec-
tive against microarchitectural side-channels on the CVA6
softcore [35] together with an experimental version of
the seL4 microkernel [17]. The seL4 kernel has a two-
level hierarchical scheduler, with a cyclic scheduler for
domains (i.e., component), and a priority-based round-
robin scheduler of threads within domains, guaranteeing
both temporal and spatial isolation. They implement time
protection by executing the temporal fence in between
domain switches. As the timing of the temporal fence
execution can leak information, they also implement a
mechanism for the temporal fence so it stalls until a
set number of cycles (cspad) after a timer interrupt.
Finally, to counter L2-based timing side-channels, seL4
was modified to color the L2 cache so pages of dis-
tinct domains map to distinct cache lines. These pages
include copies of the seL4 kernel and domain metadata,
thereby isolating the effect of a domain’s system calls.
These mitigations are evaluated using covert channels that
exploit the microarchitectural state. The results show that
the mitigations eliminated channels to below measurement
accuracy.

3. OpenMCZ

OpenMCZ is a minimal partitioning kernel for embed-
ded multicore RISC-V systems using an RISC-V’s PMP
for spatial isolation and the temporal fence to provide
time protection. OpenMCZ is based on OpenMZ [16],
an open-source implementation of the MultiZone Security
API [5], introducing better IPC, support for multicore,
and time protection. With both spatial isolation and time
protection, information flow in OpenMCZ is restricted
to explicitely defined IPC channels. Therefore, any inter-
component attacks must exploit said IPC channels. Al-



though the kernel supports multicore, we present only the
single-core version of the kernel in this paper.

3.1. Kernel Design

Zones are user-space partitions managed by the Open-
MCZ kernel running in machine-mode. Machine-mode
is the highest privilege level in RISC-V, having access
to RISC-V’s PMP unit, allowing the kernel to spatially
isolate the zones.

Inter-Zone Communication, the IPC of OpenMCZ,
includes message buffers, and message queues. Each IPC
channel is statically defined and allocated to zones, en-
abling the controlled flow of information among zones.

Scheduling of zones is done with a cyclic executive,
cooperative, or timed-cooperative scheduler:

• Cyclic Executive. Zones are scheduled in a cyclic
manner with a fixed execution time. Once the
execution time has been exhausted, the zone is
preempted.
To increase efficiency, zones may have a dedicated
slack zone to which remaining execution time can
be donated using the yield() system call.

• Cooperative. A zone is only preempted when
explicitly invoking the yield() system call.

• Timed-Cooperative. Each zone can explicitly
yield as in a cooperative scheduler, but they also
have a limited time budget.

Figure 1 illustrates a scenario involving three zones: A,
B, and C. The zones are scheduled using a cyclic executive
scheduler where Zone C is A’s slack zone. The scheduling
frequency for Zones A and B remains steady, whereas
Zone C’s scheduling is directly related to Zone A’s slack.

Zone B

Zone A

time

Zone C

Figure 1. OpenMCZ schedules three zones, A, B, and C. Zone C is a
slack zone for A, when zone A yields, zone C is resumed. By using a
slack zone, we increase the efficiency of the system while maintaining
a predictable schedule.

Time Protection of zones is implemented by using the
temporal fence instruction (fence.t) on zone-switches.
As described in Section 2, the temporal fence enhances
system security by flushing the on-core microarchitectural
state, preventing information leakage through microarchi-
tectural side-channels. However, executing fence.t is
not sufficient to prevent information leakages as when
it is executed may leak information [33]. For instance,
if timing fence.t depends on the execution of the
previous zone, the context switching time will have the
same dependency. To address this concern, there is an
additional CSR register, cspad, that causes the core to
stall the execution of fence.t until cspad cycles after
a timer interrupt.

OpenMCZ can use cspad in both the cyclic executive
and the cooperative scheduling modes. For the cyclic
executive schedule, the cspad is chosen so it masks

Zone B

Zone A

cspad

fence.t delay

time

Figure 2. OpenMCZ timer-triggered zone switch from zone A to zone B.
There is an execution-dependent delay from the timer interrupt (triangle)
to the call of fence.t (box) after which zone B starts execution. The
cspad delays the completion of fence.t so the switch is relative to
the timer interrupt.

the WCET from the timer interrupt to the completion of
fence.t instruction as illustrated in Figure 2. In the
cooperative schedule, a zone can set up timer interrupt so
the kernel stalls a yield() system call until the timer is
triggered, at which point the fence.t is executed with
padding.

3.2. Safety and Security Properties

Spatial Isolation prevents unauthorized access be-
tween zones, mitigating information leakage and inter-
ference risks. In OpenMCZ, the developer is tasked with
allocating memory in a way that achieves spatial isolation.
This allocation is then enforced by the kernel, with the
support of the PMP. To ensure effective spatial isolation,
memory allocation must adhere to the following princi-
ples:

• No zone can access kernel memory, timers, or
other memory-mapped regions that control the
core.

• Private memory of a zone must be inaccessible to
other zones.

• Partitions are prevented from accessing devices
that could bypass the PMP, such as DMA con-
trollers.

When these conditions are satisfied, OpenMCZ guarantees
the spatial isolation of zones.

Memory sharing is allowed but not recommended
due to the safety and security concerns. Shared libraries,
buffers, and devices may represent scenarios where mem-
ory sharing is considered acceptable, provided risks are
carefully managed. For instance, shared libraries should
have read-execute permissions only, and for time protec-
tion, be allocated to non-cached memory.

Inter-Zone Communication in OpenMCZ enables
data exchange between zones through predefined in-kernel
buffers, and message queues, ensuring information flow
control, and error-free operations. Shared memory com-
munication is also possible, but should be used as a simple
buffer due to potential integrity issues with structured data.

Predictable Scheduling guarantees that a system’s
behavior can be analyzed and replicated. Both cooperative
and cyclic executive schedulers are predictable. In the
cooperative model, the time of execution is unpredictable,
but the order of execution is predictable. Meanwhile, the
cyclic executive scheduler ensures that both the timing
and execution order of zones are fully predictable.

Temporal Isolation is guaranteed when the cyclic ex-
ecutive scheduler or timed-cooperative scheduler is used.



In these cases, there exists a scheduling cycle, denoted T ,
defined by the sum of the zones’ time slices t1, t2, . . . , tn.
In a timed-cooperative schedule, each of these time slices
repeats with a maximum period of T . Meanwhile, in the
cyclic executive scheduler, a time slice repeats precisely
with a period of T .

Time Protection in OpenMCZ requires the temporal
fence, cyclic executive scheduler, and careful memory al-
location. The use of the temporal fence is decided through
the cyclic executive scheduler, ensuring that information is
not leaked via the on-core microarchitecture or the sched-
uler, leaving the off-core state as the primary concern.

The kernel’s design ensures that only its code and
scheduler data must be shared among all zones, while
zone-private memory is partitioned. To make the temporal
fence effective, the shared in-kernel memory must be
allocated so they do not influence off-core state, such
as placing them in non-cached memory. Both private in-
kernel and user-space memory of zones can be freely allo-
cated, but to temporally protect security-sensitive zones,
their memory allocation must be similar to that of the
shared in-kernel memory.

4. Evaluation

We evaluate the safety, security, and performance char-
acteristics of zones running on OpenMCZ. The evaluation
platform is a modified Cheshire [25] with a single CVA6
softcore implementing the temporal fence, running on the
Genesys2 FPGA. The CVA6 core operates at a core clock
speed of 50 MHz, with a real-time clock at 1 MHz, and
has a 32 KiB write-through data and 16 KiB instruction
cache. Off core we have a 64 KiB write-back last-level
cache (LLC), and 64 KiB scratchpad memory (SPM).

In these experiments, the kernel binary is under 8 KiB,
and the total experimental setup is less than 64 KiB, al-
lowing everything to fit within the SPM or LLC. The SPM
is the default location for the experiments unless explicitly
stated otherwise. By using the SPM we bypass LLC-
based side-channels, which are challenging to mitigate
without an MMU. Furthermore, the SPM is favored for
its constant access time, unlike the LLC, which exhibits
minor variations in access time, as shown in Section 4.1.2.

It should be noted that for general-purpose OSs, using
the SPM like our kernel is often infeasible due to size
constraints. For example, the seL4 kernel requires a min-
imum of 162 KiB of memory solely for the kernel with
at least 12 KiB data, including page tables, per thread —
something which neither fits inside the LLC or SPM of
our evaluation platform.

4.1. Safety

The safety evaluation investigates the time predictabil-
ity of the kernel and the applications with and without a
temporal fence.

4.1.1. Dispatch Period. We assess the time predictability
and temporal isolation of the kernel’s cyclic executive
scheduler by measuring the dispatch period of the mea-
surer zone illustrated in Figure 3, both with and without
temporal fences.

Img. Proc.

UART

Measurer
Dispatch period

Trasher

Scheduler

Figure 3. Illustration depicting the dispatch period, which is the time
interval between the start of a zone’s user-mode execution. The sched-
uler’s share of the execution time is exaggerated in the illustration for
clarity.

To simulate a realistic operating environment, we in-
troduce noise into the experiment using three additional
zones: an image processor (see Figure 4), a UART driver,
and a trasher. The image processor and UART driver
zones contribute to the noise by communicating with
each other using IPC message queues. The IPC system
calls are non-interruptible, delaying timer interrupts and
potentially affecting scheduling. Meanwhile, the trasher
zone introduces noise by randomly evicting content from
both the data and instruction cache, impacting the system’s
execution time.

cspad - 0 250 500 750 1000
Standard deviation 83 14 13 15 1 0

Worst-case deviation 406 107 114 127 36 0
Table 1. ESTIMATED STANDARD DEVIATION AND WORST-CASE

DEVIATION OF THE DISPATCH PERIOD FOR 10,000 SAMPLES PER
CASE. THE FIRST COLUMN SHOWS THE DEVIATION WITHOUT

FENCE.T . THE SUBSEQUENT COLUMNS IS WITH FENCE.T AND
VARYING CSPAD (CYCLES AFTER TIMER INTERRUPT TO STALL

FENCE.T).

The results of Table 1 show that there is a minor vari-
ance in the dispatch period for the case when a temporal
fence is not used, and no variance for the temporal fence
case with a padding of 1000 cycles. The variance of non-
temporal fence case would peak at 8.1 µs on a 50 MHz
processor, or around 0.4 µs on a 1 GHz processor. As this
variance is already quite small, the temporal fence should
not be necessary except in the extreme cases.

62x30
sobeluart

62x30
ascii

grey resize
64x64x3 64x64

64x32

Figure 4. Schematic of the image processing application, outlining tasks
for reading an image from memory, greyscaling, resizing, applying the
Sobel operator for edge detection, converting to an ASCII representation,
and finally, printing the processed image to UART. The edge labels
indicate the byte size of the data/image.

4.1.2. Processing Time. We evaluate the impact of the
temporal fence, the SPM and the LLC on the time
predictability of the image processing zone from Sec-
tion 4.1.1. This zone reads an image, processes it, and
then forwards the result to the UART driver zone via the
kernel’s IPC message buffers. Execution time is measured



starting from the moment the image is loaded into local
memory, and ends when the processed results have been
forwarded to the UART driver. To simulate operating
variability, we use the trasher zone from Section 4.1.1,
which randomly evicts entries from the cache. The zones
are scheduled using a cooperative scheduler, given that the
scheduling does not affect the results.

Our evaluation consists of eight experimental setups,
divided equally between scenarios with and without the
temporal fence. Each scenario explores different configu-
rations of zone allocations to SPM and LLC to identify
their effects on the execution time.

The results of Table 2 show that the temporal fence
significantly affects the determinism of the application’s
execution time, while the SPM and LLC have minor
effects. The worst-case variance occurs when both the
kernel and the application are in the LLC. Placing the
image processing zone inside the SPM reduces the worst-
case deviation by 8000 core-clock cycles, roughly 30%
of the variance, and with a temporal fence, the variance
is almost eliminated. The kernel presence in the SPM
has a small influence on the execution time. If both the
kernel and the application are in the SPM, the variance is
eliminated, indicating that the LLC cache is a source of
variance.

Image Kernel w/ fence.t Kernel w/o fence.t
Processor SPM LLC SPM LLC

SPM 0/0 12/32 4289/18372 4454/18489
LLC 29/76 36/100 6079/26388 6309/26426

Table 2. THE STANDARD DEVIATION/WORST-CASE DEVIATION OF
THE IMAGE PROCESSING TIME MEASURED IN CORE-CLOCK CYCLES.

The results from these measurements provide valu-
able insights for enhancing system predictability using
a specialized kernel like OpenMCZ, particularly for im-
proving WCET estimates and verifying the constant-time
execution of programs. Firstly, the use of a temporal
fence significantly reduces execution time variance by
resetting the on-core state and making it less dependent on
the environment, thereby increasing the accuracy of time
estimates such as WCET, enabling more aggressive real-
time scheduling. Secondly, using the temporal fence with
the kernel and application in SPM allows for an evaluation
of whether a program has a constant execution time in
a real system, isolating observed variations in execution
time to the running program or relevant devices.

Conversely, achieving the predictability seen in spe-
cialized kernels is significantly more challenging with a
general-purpose OS like seL4. Firstly, as discussed earlier,
having a general-purpose OS kernel within an SPM is
often infeasible due to size constraints, but suppose that
there is enough space. Then, another hurdle is ensuring the
virtual memory system operates deterministically, as page
misses can lead to considerable timing discrepancies. Fur-
thermore, making system call execution times determinis-
tic, a simpler task in specialized kernels is notably more
complex in general-purpose systems. Therefore, attaining
an equivalent degree of predictability in general-purpose
systems poses a significantly greater challenge.

4.2. Security

The security assessment examines the potential for
establishing a covert channel between two distinct zones,
a Trojan and a spy, where the Trojan should leak one
bit of information per scheduling cycle. These zones are
managed by a cyclic-executive scheduler and do not share
any resources. We specifically focus on memory-based
side-channels, as the way memory is used is the primary
difference from the experiments of Wistoff et al. [33].
In particular, we investigate whether the temporal fence
is effective when the kernel, the Trojan, and the spy are
placed in SPM.

The assessment evaluates information leakage by con-
structing covert channels through two mediums: data
cache and instruction cache.

Data cache: The spy primes the D-cache by writing
to it; the Trojan writes to memory to signal a ’1’ or does
nothing for ’0’; and lastly, the spy measures the access
time to the cache, with a longer time indicating a ’1’.

Instruction cache: The spy primes the I-cache using
the fence.i instruction; Trojan uses system calls to
signal ’1’ or does nothing to signal ’0’, and lastly, the
spy measures the execution time of the same system calls,
with a shorter duration indicating a ’1’.

We measure the effectiveness of these covert channels
using discrete mutual information [13] defined as:

I(X;Y ) =
∑
x∈X

∑
y∈Y

pX,Y (x, y) log2
pX,Y (x, y)

pX(x)pY (y)
. (1)

The mutual information quantifies the number of bits of
information obtained about an unseen variable Y when
observing another variable X . In scenarios where n bits
of information are transmitted, the mutual information’s
range is [0, n], where 0 signifies the absence of infor-
mation flow, while a n indicates an optimal flow of
information.

In our evaluation, the observed variable X is the
spy’s measurements, the unseen variable Y represents
the bit encoded by the Trojan, and the range of mutual
information is [0, 1]. To calculate the mutual information,
we estimate the probability density functions pX , pY , and
pX,Y from the sampled data.

Table 3 indicates that without a temporal fence, there is
a perfect flow of information, thus a highly reliable covert
channel. However, with a temporal fence, the mutual
information is nullified, indicating the absence of any
information through these channels.

fence.t? D$ I$
No 1000.0 1000.0
Yes 0.0 0.0

Table 3. THE EFFECTIVENESS OF THE COVERT CHANNELS WITH AND
WITH FENCE.T , MEASURED IN DISCRETE MUTUAL INFORMATION

QUANTIFIED AS MILLIBIT. ANALYSIS WAS CONDUCTED WITH
100,000 PAIRS OF SAMPLES TO ASSESS THE COVERT CHANNEL’S

EFFECTIVENESS.

The results of the experiments confirm that OpenMCZ
correctly uses fence.t, and supports the findings of
Wistoff et al. [33]. More importantly, the results show that,
for specialized systems, time protection can be achieved
without kernel partitioning or using cache coloring as
suggested by Ge et al. [12] for hypervisors. A significant



limitation of using non-cached memory for time pro-
tection is, however, their small capacities. Consequently,
the results suggest a partitioning strategy for constrained
systems where non-security-sensitive applications use the
DRAM, while the separation kernel and security-sensitive
applications are allocated to the SPM or similar. The
results also suggest an alternative strategy for general-
purpose systems like seL4, where shared kernel code can
be placed inside the SPM while domain-specific data is
cache colored.

4.3. Performance

Performance is assessed with an image processing
application depicted in Figure 4, where tasks are encap-
sulated in separate zones, scheduled cooperatively, and
communicate through pairwise shared buffers located on
the LLC.

The system’s execution time is measured in core-clock
cycles across three scenarios: (a) kernel with temporal
fences, (b) kernel without temporal fences, and (c) bare-
metal execution.

Table 4 presents the performance metrics, with
and without UART communication included. Excluding
UART communication, a performance bottleneck, reveals
a marginal kernel overhead of 0.8%, which escalates to
14% upon introducing a temporal fence. However, when
including slow UART communication, the kernel, and the
temporal fence’s overhead is made insignificant.

excl. UART incl. UART
Bare-metal 408 8,702
no fence 411 8,705
fence.t(0) 453 8,748
fence.t(2500) 456 8,751
fence.t(5000) 466 8,761

Table 4. THE ESTIMATED WORST-CASE PERFORMANCE OF THE
IMAGE PROCESSING APPLICATION IS QUANTIFIED IN 1000 CORE

CLOCK CYCLES. THE IMPLEMENTATIONS USING THE KERNEL WITH
THE TEMPORAL FENCE HAVE THE PAD IN PARENTHESIS.

The results reveal that the impact of temporal fences
on system performance depends on the characteristics of
the zones. For instance, zones like the UART driver, which
inherently have longer execution times, are minimally
impacted by the inclusion of temporal fences. In contrast,
tasks with shorter execution times encounter a significant
performance degradation.

The distinction holds significance for real-world
safety- and security-critical applications, particularly con-
cerning the feasibility of temporal fence in real-time
systems. In soft real-time systems and enclaves, where
reduced performance degrades the system, the increased
cost of partition switches or enclave calls may make the
system infeasible. Conversely, in hard real-time systems
where tasks are scheduled according to their WCET, the
temporal fence may have no discernible effect. This can be
seen by noting that the state established by the temporal
fence must be considered in the WCET analysis of any
isolated component.

5. Related Work

OpenMCZ is a specialized separation kernel for real-
time resource-constrained embedded devices that also

temporally protect system components. There are many
separation kernels or partitioning kernels for constrained-
device [1]–[3], [8], [26], however, OpenMCZ is the first
with implemented and tested time protection. However, for
more powerful systems with MMU, we have seL4 [33].

PipMPU is an adaptation of PipMMU to constrained
devices [8], slightly larger (10 KiB) than OpenMCZ (4–
8 KiB), but has been formally verified in COQ [9], [32].
A popular RTOS is FreeRTOS which has an MPU-based
variant [1]. Both of these kernels and many others, have
a priority-based scheduling with tasks being dynamically
created, unlike OpenMCZ, so the feasibility of imple-
menting time protection is unknown. Meanwhile, kernel
with static scheduling and memory allocation such as
MultiZone Security [26], on which OpenMCZ is based,
can easily implement time protection as demonstrated in
this paper.

Adding time protection into priority-based kernels
with dynamic task creation faces significant challenges.
Firstly, the kernel must operate deterministically with
respect to dynamically created resources to prevent any
unintended information leakage through its implementa-
tion, for instance, via task creation or kernel interac-
tions. Secondly, the frequent task interruptions inherent
to priority-based scheduling necessitate careful design to
avoid leaking sensitive task information and to mitigate
the performance impact of the temporal fence. This re-
quires ensuring that the scheduling does not inadvertently
disclose sensitive information and that it is optimized
to minimize the temporal fence’s overhead by allocating
sufficient contiguous execution time for tasks.

An alternative to temporal fences is security domes
by Escouteloup et al. [10], enabling a comprehensive
system partitioning for both single-core and multi-core
systems. Unlike temporal fences, which focus on the core-
local state, security domes partition both processor cores
and external resources into distinct partitions known as
domes. At any given time, a core is associated with a
single dome, but resources may be shared across multiple
domes. The number of domes a resource can support
simultaneously depends solely on the implementation.
This approach allows for a multi-core system where cores
in different domes can access the same resource without
interference. This architecture contrasts with the narrower
scope of temporal fences, which isolate on-core states,
necessitating additional measures such as cache coloring
for comprehensive system isolation.

6. Discussion

We evaluate OpenMCZ using Cheshire as it has a
CVA6 core implementing the temporal fence, can support
multi-core, and is Linux compatible. These features enable
us to further develop and evaluate OpenMCZ as a multi-
core partitioning kernel or security monitor for TEEs.
Moreover, it is open-source, allowing us to develop new
hardware, such as a bus and memory if required.

Cheshire’s application-level features, such as MMU,
do not affect the findings of this paper regarding time
protection for embedded systems, as those features are
not used in the evaluation. Cheshire has both its LLC
and SPM on the bus, meaning that the SPM of Cheshire
functions as SRAM. Thus, if we exclude the MMU, LLC,



and DRAM of Cheshire, we obtain an MCU with SRAM
accessed through a shared bus.

For multi-core time protected OpenMCZ, there are
two cases to consider: multi-threaded partitions, where
each partition has multiple threads running in parallel, and
parallel partitions, where multiple partitions may run in
parallel.

In the case of multi-threading, the primary concern is
to limit the inter-core interference of the system. This is
because the padding of the temporal fence depends on the
kernel’s worst-case response time (WCRT) with respect
to the scheduler’s timer interrupt. If this WCRT is too
high due to interference on shared resources, a single-core
system may be faster in practice.

If the kernel is placed in shared memory, such as
SRAM, the associated shared bus is a source of interfer-
ence [22]. A standard bus will serve one core at a time, so
cores will naturally interfere. Depending on core activity,
and the bus, this interference may be significant enough
to make the system infeasible. To reduce bus interference,
there are special buses for real-time systems that rate-limit
a core’s requests [34]. For multi-threaded OpenMCZ on
shared memory, such a bus may be needed to obtain a
reasonable WCRT. However, OpenMCZ is designed so
that every part of the kernel, except parts related to inter-
core IPC, can be placed in SPM. In such a case, the
kernel’s WCRT is only affected by interference from inter-
core IPC.

In the case of parallel partitions, the situation is
more challenging as the kernel and partitions must be
interference-free. The kernel and partitions may be placed
in SPM to eliminate interference, but this may not be an
option if these partitions must access devices on the bus.
Therefore, for parallel partitions, we need an interference-
free bus, and possibly devices, to mitigate inter-core side-
channels.

7. Conclusion

The temporal fence in OpenMCZ significantly im-
proves the safety and security of embedded systems. By
using scratchpad memory and the temporal fence we
demonstrate that a class of side-channel attacks exploiting
microarchitectural states can be eliminated on a resource-
constrained system using a minimal partitioning kernel
using RISC-V’s PMP for memory protection. Beyond
eliminating side-channel attacks, we show that tempo-
ral fence also enhances timing predictability by bringing
the on-core state to a known state. When the temporal
fence is combination with deterministic memory we get
a fully deterministic program execution even on modern
application-grade processors. This enables a more accurate
estimate of a task’s worst-case execution time, allowing
for more aggressive real-time scheduling, and improved
protection against timing attacks. Moreover, deterministic
execution allows for the evaluation of whether a constant-
time program truly runs in constant time on a real-world
system, as any variance must be attributed either to the
program or related devices, not to concurrently running
applications.

Given the broader implications of these findings, the
approaches utilized by OpenMCZ could extend to general-
purpose systems, enabling time protected and determin-

istic enclave execution. For example, OpenMCZ could
be modified to function as a security monitor, with an
operating system like Linux using DRAM memory, while
the OpenMCZ and TEEs are allocated to scratchpad
memory. Additionally, these insights could simplify ex-
isting the time protected seL4 by allocating kernel code
to scratchpad memory and applying cache coloring to
domain data. This strategy would eliminate the need for
duplicating the kernel, simplifying the system architecture,
while increasing its time predictability.

References

[1] FreeRTOS-MPU - ARM Cortex-M3 and ARM Cortex-
M4 Memory Protection Unit support in FreeRTOS.
https://www.freertos.org/FreeRTOS-MPU-memory-protection-
unit.html.

[2] Mbed OS | Mbed. https://os.mbed.com/mbed-os/.

[3] The Zephyr Project – A proven RTOS ecosystem, by developers,
for developers. https://www.zephyrproject.org/.

[4] MultiZone Security TEE for RISC-V, June 2019.

[5] Hex-five/multizone-api. Hex Five Security, Inc., November 2022.

[6] Jaume Abella, Carles Hernandez, Eduardo Quinones, Francisco J.
Cazorla, Philippa Ryan Conmy, Mikel Azkarate-askasua, Jon
Perez, Enrico Mezzetti, and Tullio Vardanega. WCET analysis
methods: Pitfalls and challenges on their trustworthiness. In 10th
IEEE International Symposium on Industrial Embedded Systems
(SIES), pages 1–10, Siegen, Germany, June 2015. IEEE.

[7] Mads Dam, Roberto Guanciale, Narges Khakpour, Hamed Nemati,
and Oliver Schwarz. Formal verification of information flow secu-
rity for a simple arm-based separation kernel. In Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications
Security - CCS ’13, pages 223–234, Berlin, Germany, 2013. ACM
Press.

[8] Nicolas Dejon, Chrystel Gaber, and Gilles Grimaud. From MMU
to MPU: Adaptation of the Pip Kernel to Constrained Devices.
In Artificial Intelligence, Soft Computing and Applications, pages
109–127. Academy and Industry Research Collaboration Center
(AIRCC), December 2022.

[9] Nicolas Dejon, Chrystel Gaber, and Gilles Grimaud. Pip-MPU:
Formal verification of an MPU-based separation kernel for con-
strained devices. International Journal of Embedded Systems and
Applications, 13(02):1–21, 2023.

[10] Mathieu Escouteloup, Ronan Lashermes, Jacques Fournier, and
Jean-Louis Lanet. Under the Dome: Preventing Hardware Timing
Information Leakage. In Vincent Grosso and Thomas Pöppelmann,
editors, Smart Card Research and Advanced Applications, pages
233–253, Cham, 2022. Springer International Publishing.

[11] Dario Faggioli, Marko Bertogna, and Fabio Checconi. Sporadic
Server revisited. In Proceedings of the 2010 ACM Symposium
on Applied Computing, pages 340–345, Sierre Switzerland, March
2010. ACM.

[12] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time
Protection: The Missing OS Abstraction. In Proceedings of the
Fourteenth EuroSys Conference 2019, pages 1–17, Dresden Ger-
many, March 2019. ACM.

[13] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel.
Mutual Information Analysis. In Elisabeth Oswald and Pankaj
Rohatgi, editors, Cryptographic Hardware and Embedded Systems
– CHES 2008, volume 5154, pages 426–442. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[14] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper.
The Mälardalen WCET Benchmarks: Past, Present And Future.
In DROPS-IDN/v2/Document/10.4230/OASIcs.WCET.2010.136.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2010.

[15] Gernot Heiser, Toby Murray, and Gerwin Klein. Towards Provable
Timing-Channel Prevention. ACM SIGOPS Operating Systems
Review, 54(1):1–7, August 2020.



[16] Henrik Karlsson. OpenMZ: A C Implementation of the MultiZone
API. PhD thesis, KTH Royal Institute of Technology, 2020.

[17] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch,
and Simon Winwood. seL4: Formal verification of an OS kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium on Operat-
ing Systems Principles, pages 207–220, Big Sky Montana USA,
October 2009. ACM.

[18] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović,
and Dawn Song. Keystone: An open framework for architecting
trusted execution environments. In Proceedings of the Fifteenth
European Conference on Computer Systems, pages 1–16, 2020.

[19] C. L. Liu and James W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. Journal of
the ACM, 20(1):46–61, January 1973.

[20] C. Douglass Locke. Software architecture for hard real-time
applications: Cyclic executives vs. fixed priority executives. Real-
Time Systems, 4(1):37–53, March 1992.

[21] D. Locke, L. Sha, R. Rajikumar, J. Lehoczky, and G. Burns.
Priority inversion and its control: An experimental investigation.
ACM SIGAda Ada Letters, VIII(7):39–42, June 1988.

[22] Tamara Lugo, Santiago Lozano, Javier Fernández, and Jesus Car-
retero. A survey of techniques for reducing interference in real-
time applications on multicore platforms. IEEE Access, 10:21853–
21882, 2022.

[23] Anna Lyons, Kent McLeod, Hesham Almatary, and Gernot
Heiser. Scheduling-context capabilities: A principled, light-weight
operating-system mechanism for managing time. In Proceedings
of the Thirteenth EuroSys Conference, pages 1–16, Porto Portugal,
April 2018. ACM.

[24] R. M. Needham and R. D.H. Walker. The Cambridge CAP
computer and its protection system. ACM SIGOPS Operating
Systems Review, 11(5):1–10, November 1977.

[25] Alessandro Ottaviano, Thomas Benz, Paul Scheffler, and Luca
Benini. Cheshire: A Lightweight, Linux-Capable RISC-V Host
Platform for Domain-Specific Accelerator Plug-In, July 2023.

[26] Sandro Pinto and Cesare Garlati. Multi zone security for arm
cortex-m devices. In Embedded World Conference, volume 2020,
2020.

[27] Paul J. Prisaznuk. ARINC 653 role in Integrated Modular Avionics
(IMA). In 2008 IEEE/AIAA 27th Digital Avionics Systems Confer-
ence, pages 1.E.5–1–1.E.5–10, St. Paul, MN, USA, October 2008.
IEEE.

[28] J. M. Rushby. Design and verification of secure systems. ACM
SIGOPS Operating Systems Review, 15(5):12–21, December 1981.

[29] John Rushby. Partitioning in Avionics Architectures: Require-
ments, Mechanisms, and Assurance. Technical Report NASA/CR-
1999-209347, June 1999.

[30] Abderrahmane Sensaoui, Oum-El-Kheir Aktouf, David Hely, and
Stephane Di Vito. An In-depth Study of MPU-Based Isolation
Techniques. Journal of Hardware and Systems Security, 3(4):365–
381, December 2019.

[31] Arash Vahidi. The Monotonic Separation Kernel. In 2014 12th
IEEE International Conference on Embedded and Ubiquitous Com-
puting, pages 112–119, Milano, Italy, August 2014. IEEE.

[32] Florian Vanhems, Vlad Rusu, David Nowak, and Gilles Grimaud.
A Formal Correctness Proof for an EDF Scheduler Implementation.
In RTAS 2022: 28th IEEE Real-Time and Embedded Technology
and Applications Symposium, Milan, Italy, May 2022.

[33] Nils Wistoff, Moritz Schneider, Frank K. Gürkaynak, Gernot
Heiser, and Luca Benini. Systematic Prevention of On-Core Timing
Channels by Full Temporal Partitioning. IEEE Transactions on
Computers, 72(5):1420–1430, May 2023.

[34] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and
Lui Sha. Memguard: Memory bandwidth reservation system for
efficient performance isolation in multi-core platforms. In 2013
IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 55–64. IEEE, 2013.

[35] Florian Zaruba and Luca Benini. The Cost of Application-Class
Processing: Energy and Performance Analysis of a Linux-Ready
1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
27(11):2629–2640, November 2019.

[36] Yongwang Zhao, Zhibin Yang, and Dianfu Ma. A survey on formal
specification and verification of separation kernels. Frontiers of
Computer Science, 11(4):585–607, August 2017.


