
Conditional Network Availability: Enhancing Connectivity Guarantees for
TEE-Based Services

Jonas Röckl
FAU Erlangen-Nürnberg

jonas.roeckl@fau.de

Christian Lindenmeier
FAU Erlangen-Nürnberg

christian.lindenmeier@fau.de

Matti Schulze
FAU Erlangen-Nürnberg

matti.schulze@fau.de

Tilo Müller
Hof University of Applied Sciences

tilo.mueller@hof-university.de

Abstract—Trusted Execution Environments (TEEs) are
widely available, allowing the isolation of security-sensitive
trusted services from an untrusted commodity OS. Driven
by manifold use cases, more and more trusted services
requiring network connectivity are developed. Typically, the
traffic of trusted services is routed through the OS, while
cryptography ensures confidentiality and integrity. However,
the extent to which TEEs can also help to provide network
availability for trusted services remains underexplored.

We introduce Conditional Network Availability (CNA) as
a novel concept for TEE-based networking, ensuring that
a trusted service can process network traffic, whenever the
potentially malicious OS can do so. Our concept prevents an
attacker from monopolizing the network channel (e.g., for
a botnet campaign). TEE-based remote device management,
system monitoring, and intrusion detection systems can profit
from our concept.

Proposing a split-driver model, we implement a proof-of-
concept on real hardware, multiplexing a complex Ethernet
interface between the OS and the ARM TrustZone TEE.
Our evaluation shows that our system achieves near-native
throughput while keeping the additions to the TCB small.

1. Motivation

Trusted Execution Environments (TEEs) provide ef-
fective protection against application- and even kernel-
level attackers. Driven by manifold use cases, TEE-
based services are becoming increasingly complex [7].
Notably, many of the services (e.g., mobile device man-
agement [37], system monitoring [19], and control flow
attestation [1], [34]) require network connectivity.

Naively, one approach to achieve network connectivity
for trusted services is to migrate the complete network
driver and its dependencies to the TEE and expose a
virtual Network Interface Card (NIC) to the Rich Ex-
ecution Environment (REE). While this method is well
suited for hypervisors [30], it falls short for a TEE due
to the large additions to the Trusted Computing Base
(TCB) [4]. NIC drivers can span tens of thousands of
Lines of Code (LoC) [27]. Therefore, TEE-based systems
typically encrypt the payload before forwarding it to an
agent within the REE [14]. This agent then assembles
a network packet and forwards it relying on the network
stack of the untrusted OS. While cryptography can provide
integrity, confidentiality, and authenticity, there is no avail-
ability. An attacker can defer, replay, and block packets.

Traditionally, this has not posed an issue, since trusted
services only activate when requested by the OS [39].
There was no computational availability for trusted ser-
vices since the TEE depends on the REE scheduler to
allocate CPU time for the TEE. However, there has been
a growing interest in implementing computational avail-
ability for TEEs, meaning that the architecture guarantees
that the TEE is scheduled regularly [3], [17], [24], [26],
[29], [39], [40]. A common strategy is to use timers, which
can only be controlled by the TEE and regularly interrupt
the CPU to execute the TEE [3], [6], [12], [24], [39].

We explore how the computational availability of
TEEs influences the network I/O of trusted services. In the
networking domain, true availability can only be achieved
through (physical) redundancy, if at all. Yet, we are reluc-
tant to accept that the only practical approach is to rely
on the REE to forward traffic, giving up any availability
to the extent that an attacker can monopolize the network
channel (e.g., for botnet campaigns [4], [35]).

Contributions. We aim to decrease the dependency
of the TEE on the REE when conducting network I/O in
trusted services. To that end, we develop a novel approach
to multiplex a complex Ethernet interface between the
TEE and the REE, while keeping a low TCB and ensuring
certain network availability guarantees for trusted services.
More precisely, we make the following contributions:

• We define the concept of Conditional Network
Availability (CNA) as a property for TEE-based
networking. In a nutshell, a TEE network interface
complies with CNA if a trusted service can send
and receive data whenever the REE can do so.

• We derive a system architecture, based on ARM
TrustZone, capable of multiplexing an Ethernet
interface between the TEE and the REE. We show
that the interface is compliant with CNA.

• We create a proof-of-concept1 on real, unmodified
Commercial-Off-The-Shelf (COTS) hardware and
measure network throughput and latency.

• We show that the CNA-compliant Ethernet inter-
face for the TEE comes with small additions to
the TCB and discuss security implications.

We focus on a CNA-compliant Ethernet interface for
the TEE. Adding support for further protocols to the
TEE, such as TCP/IP, is future work. However, these do
not require peripheral access and can be isolated using
existing techniques (Sec. 7).

1. https://github.com/conditional-network-availability/src



2. Background

ARM TrustZone. With ARM TrustZone, the device is
partitioned into two distinct execution environments, the
Normal World (NW), as a REE, with a full-fledged OS
such as GNU/Linux, and the Secure World (SW), as a
TEE, with stripped-down system software (referred to as
SW OS). The secure monitor runs at the highest privilege
level, handling context switches from and to the SW. The
secure monitor is considered part of the TEE. To initiate a
world switch, a Secure Monitor Call (SMC) is executed,
triggering a synchronous exception that is taken to the
secure monitor. At system startup, the secure monitor is
launched first, followed by the initialization of the SW
OS. Only after that, the NW starts. To prevent boot chain
attacks, the authenticity of all SW software is verified
during load time (secure boot). The Root of Trust (RoT),
i.e., a public key to verify the signatures, must be protected
from modifications. For example, some boards support
burning a key into the hardware with eFuses. To alter
or extend the behavior of TrustZone-based systems, one
can either modify the SW OS or the secure monitor. We
extend the secure monitor to provide a CNA-compliant
network interface to the SW.

ARM TrustZone I/O. ARMv8-A uses Memory-
Mapped I/O (MMIO) to communicate with peripherals.
With a TrustZone Protection Controller (TZPC) or simi-
lar manufacturer-specific hardware, the TrustZone allows
assigning peripherals to (exactly) one world, restricting
access to their MMIO registers to that world. However,
typical SW OSs, such as OP-TEE [22], do not access the
NIC directly but forward packets to an agent in the NW.

Networking Drivers. From a broader perspective, an
Ethernet NIC in interrupt mode works as follows. The NIC
features configuration registers accessible via MMIO. By
writing to them, the OS can set up an Ethernet connection.
Ethernet NICs are centered around the concept of (descrip-
tor) rings. A descriptor ring is a cyclic buffer in RAM,
which contains (buffer) descriptors. A buffer descriptor
is a data structure with a pointer to a frame in RAM and
fields that describe the frame’s state (e.g., the length of the
frame and whether it is ready for transmission). The NIC
accesses the descriptor rings via Direct Memory Access
(DMA). There are MMIO configuration registers, written
to by the CPU, that hold the address of each ring in RAM.

To transmit (TX) a frame, the OS fills a descriptor in
a TX ring and marks it as ready. Subsequently, the NIC
sends the frame. The position in the rings moves ahead.
The NIC enriches the descriptor with status information.
For general-purpose hardware, the OS sets up the NIC
to issue an Interrupt Request (IRQ) after a transmission.
Handling the IRQ, the CPU retrieves the status.

To receive (RX) frames, the OS prepares a RX ring
pointing to empty buffers. When the NIC receives a frame,
the NIC copies it to the next free buffer pointed to by a
descriptor and sets a flag in the descriptor. Subsequently,
the NIC issues an IRQ and the driver iterates through the
new descriptors in the ring to process the frames.

There are multiple TX rings and RX rings. While
NICs typically place all received frames in one RX ring,
some models allow directing frames to a ring based on the
frame’s headers. This allows, for example, to implement
Quality of Service (QoS) mechanisms [27].

3. Adversary Model

We focus on an attacker who compromises the NW
OS. The attacker can modify kernel data structures, in-
cluding the ones of the NIC driver in the NW. The attacker
can also manipulate clocks, disable the NIC, or shut down
the system. Our TCB is all the software in the SW,
which is common for TEE-based systems. True network
availability can only be attained through redundancy, if
possible at all. Thus, we exclude safety-critical systems
that rely on the timely delivery of packets.

We consider an attacker who communicates with the
device over the network and exploits vulnerabilities in the
NW to take over the device. We assume that attackers tend
to maintain network connectivity to continuously control
the device [37]. We do not address an attacker controlling
the network itself, such as in man-in-the-middle attacks.
Like Denial of Service (DoS) attacks (Sec. 7), such threats
can only be mitigated at the infrastructure level.

We assume that the hardware and the TEE work as
specified. We assume a secure boot chain and a fixed RoT.
Side-channel attacks and physical attacks are out of scope.

4. Conditional Network Availability

We observe that trusted services frequently involve
either the need to transmit (e.g., for system monitoring [8],
[19]) or the necessity to receive data (e.g., commands for
mobile device management [17], [31], [37] or software
updates [10], [29], [40]). Relying on a network agent in
the NW (Sec. 1), all of these systems are exposed to an
attacker that monopolizes the network for their purposes
(e.g., DDoS [4], [16]) while blocking TEE traffic. This
becomes especially problematic if the attacker can trigger
unfavorable system states this way (e.g., deferring the
installation of security updates). To prevent an attacker
from monopolizing the network channel, we define the
concept of CNA as a property for a TEE network interface.

Definition. A TEE network interface complies with
Conditional Network Availability (CNA) if there is as-
surance that the TEE can process data via the interface
whenever the REE is capable of doing so.

In essence, this means that an attacker cannot disrupt
or block TEE-based communication without breaking con-
nectivity for the REE as well. It is important to note,
however, that the attacker may still be able to disrupt the
interface for both the TEE and the REE entirely. However,
this also prevents the attacker from exploiting the device
for malicious network traffic [4], [16].

5. Design and Implementation

Having high-end IoT devices, networking infrastruc-
ture, industrial control systems, and automotive systems
in mind, we design a system with an Ethernet interface
capable of sending and receiving frames from within the
TEE and show that it complies with CNA. We base our
system on an ARMv8-A device with TrustZone support.

Overview. Fig. 1 gives an overview of our system ar-
chitecture. Following related work [32], [37], we propose
a split-driver model and keep the majority of the NIC



SW NIC Driver

 NIC

T-MMIO T-RXT-TX

T-Service

NW SW (Secure Monitor)

CLK
PWR

PHY
IRQ

MMIO

NW NIC Driver
TX / RX

T-Timer

Figure 1. Overview of the proposed architecture. Arrows indicate data
flow. The dotted line shows the isolation between NW and SW. The
dashed lines indicate the interface between software and hardware.
Components with a grey background are in the TCB.

driver in the NW to keep the TCB small. For example,
clock handling (CLK), power management (PWR), PHY
management [13], and IRQ handling remain in the NW.
In contrast, we split the MMIO register handling, the TX
processing, and the RX processing into one module in
the NW and one in the SW (prefixed with T- for trusted).
Together, T-MMIO, T-TX, and T-RX provide an Ethernet
interface within the TEE, which we multiplex between
the worlds so that the NW cannot selectively block SW
traffic. After the NIC has been initialized via setting
MMIO registers, the majority of the communication takes
place via the rings (Sec. 2). However, we cannot keep
the rings in the NW. This is because a compromised NW
could overwrite SW descriptors before they are processed,
breaking CNA guarantees. Thus, T-MMIO intercepts the
access to the NIC configuration to ensure that the rings
are in SW memory. We describe the module in Sec. 5.1
in more detail. The T-TX module offers an interface to
SW and NW that enables the transmission of an Ethernet
frame. The module inserts a buffer descriptor to the right
ring at the right position while ensuring that CNA holds.
We deal with TX processing in Sec. 5.2. Similarly, T-RX
provides receiving capabilities for NW and SW, while
ensuring CNA (Sec. 5.3). T-Service is an exemplary
trusted service that relies on this interface. For the sake of
simplicity, we directly include T-Service in the secure
monitor in our Proof of Concept (PoC). However, we
argue that, without loss of generality, the interface can
be exported to the rest of the SW, i.e., the SW OS and
its applications, as well. In the current state, T-Service
contains logic for benchmarking purposes (Sec. 6).

Available Trusted Service. CNA requires computa-
tional availability for the SW. Otherwise, the NW can
starve the TEE (Sec. 1). Following related work [37], [39],
we use a trusted timer (T-Timer) to trap the execution
flow to the SW regularly. Once the timer IRQ fires,
we execute our trusted service. Subsequently, the secure
monitor passes the control flow back to the NW. Since
the NW is not able to interfere with the timer or the IRQ,
the trusted service is computationally available.

5.1. Controlling the NIC Configuration

As a first step towards CNA, we move the descriptor
rings and the contained buffer descriptors from NW mem-
ory to SW memory. To do so, we first alter the secure
monitor so that the NIC is assigned to the SW during the
boot process, thereby permitting access to the NIC MMIO

 NIC

NW Driver

T-TX

T-Service
NW SW

R1 R2

1101001... 1101001...

Figure 2. TX interface. Solid arrows indicate data flow. Dashed arrows
are pointers. Black parallelograms depict descriptors. Black rectangles
are buffers for frames. The dotted line shows the isolation between NW
and SW. The dashed lines indicate the interface between software and
hardware. Components with a grey background are in the TCB.

registers exclusively to the SW software. Note that the
assignment happens before the NW starts.

After that, we alter the NIC driver in the NW so that
every access (e.g., readl or writel) to a NIC MMIO
register issues a SMC, resulting in a context switch to
T-MMIO. Subsequently, T-MMIO can monitor and modify
the configuration changes before it writes the values to the
NIC registers. In particular, the T-MMIO module writes
pointers to the SW descriptor rings to the configuration
registers and blocks any attempt of the NW to change to
location of the descriptor rings in the memory. Since we
control the NIC MMIO registers, we can enforce that the
NIC uses the rings in the SW. Since they are stored in
SW memory, the NW no longer has direct access to read
from or write to the descriptor rings.

To preserve connectivity for the NW, we alter the NW
NIC driver so that an SMC to T-TX (Sec. 5.2) resp. T-RX
(Sec. 5.3) is issued whenever the NW driver intends to
write a descriptor or read a descriptor from a ring.

5.2. TX Interface

Typically, NICs have multiple TX rings (Sec. 2), re-
sulting in multiple strategies on how to fill the rings. In the
single queue strategy, the OS uses one TX ring. However,
for high throughputs (i.e., ≥10 Gbps), a single queue can
lead to resource contention [33]. To overcome contention
issues, multi-queue strategies are used, which assign TX
rings to CPU cores. As a result, the cores do not need to
synchronize access to a common TX ring.

Descriptor Ring for the SW. Instead of another CPU
core, we propose to assign one TX ring to the SW (Fig. 2).
A dedicated ring for the SW saves us from synchronizing
the current position in the ring between NW and SW,
which would entail additional complexity. Via calls to the
T-TX module, the trusted service can prepare a buffer
descriptor (black parallelogram) that points to a network
frame in the SW (binary digits). Once the T-TX module
inserts the descriptor into the TX descriptor ring dedicated
to the SW (R2, Fig. 2), the frame is sent. In contrast, the
network stack of the NW OS submits network frames to
the NW NIC driver. Subsequently, the NIC driver assem-
bles a buffer descriptor pointing to the network frame in
NW memory. We modify the NIC driver in a way that
the driver issues an SMC when the descriptor is ready
for transmission. The T-TX module inserts the descriptor
into one of the rings dedicated to the NW (R1, Fig. 2).
Subsequently, the network frame is sent.

CNA for TX. To fulfill CNA guarantees for TX, we
need to ensure that the NIC consistently transmits frames



from the SW ring (R2, Fig. 2) whenever the NIC transmits
frames from the rings assigned to the NW (R1, Fig. 2).
Essentially, this requires preventing NIC configurations
that exclusively disable or impede the SW TX ring while
maintaining the functionality of the NW ring(s).

With the help of the T-MMIO module, we block any
attempt from the NW to (1) configure the NIC to use
other TX rings than those that we set up in the SW, (2)
disable the SW TX ring, (3) change the structure or size
of descriptor rings, (4) decrease the maximum TX size
to unreasonable values, and (5) change the interpretation
of the frames in RAM (e.g., padding bytes). Finally, (6)
detecting a NIC reset is crucial, which typically resets
the positions within the descriptor rings where the NIC
anticipates the next buffer descriptor. Consequently, failing
to detect resets leads to the insertion of descriptors at
the wrong positions in the TX ring. The NIC waits for
the descriptor at another position to be ready, potentially
breaking network connectivity for the SW only. Since
a NIC reset is typically triggered via writing a MMIO
register, we can use T-MMIO to reliably detect NIC resets
and restore our bookkeeping of the current positions in the
rings to the initial values.

In our practical observations, the NIC driver sets the
MMIO registers responsible for the six requirements from
the previous paragraph to a static value during initializa-
tion. We extract the expected values from the code and
design the T-MMIO module so that other values for the
MMIO registers are rejected. Moreover, verifying selected
registers does not come with great additions to the TCB,
leaving the driver’s complexity in the NW (Sec. 7).

With T-MMIO in place, we can not only guarantee that
the NIC enables and uses the TX ring dedicated for the
SW, but also enforce a certain structure of the descriptors
in the ring. Thus, the T-Service can prepare network
frames and issue requests to T-TX to insert descriptors
(with the expected structure) to the SW TX ring pointing
to the frames. Since the NW cannot selectively disable
the SW TX ring, the frames are sent as long as the NIC
and the network allow sending frames at all. Thus, our
TX design complies with CNA.

Mitigating Malicious Pointers. Particular caution is
required when pointers are exchanged across isolation
boundaries, e.g., when the privileged SW dereferences
pointers passed from the less-privileged NW. This is
because the SW lacks semantic information about the
passed pointers. Without proper validation that the pointer
references NW memory, the NW can trick the SW to
dereference pointers to the SW, often resulting in priv-
ilege escalation attacks [9]. Under normal circumstances,
the descriptors in the NW TX point to network frames
in NW memory (Fig. 2). However, maliciously injected
pointers could allow the attacker to manipulate the NIC
into reading (and potentially even sending) SW memory.

Whenever the NW requests to insert a descriptor in the
ring (R1, Fig. 2), we first copy the descriptor to scratch
memory in the SW. We then validate that the pointer
in the descriptor references NW memory and also check
the frame’s length (also stored in the descriptor). If the
descriptor is legitimate, we set the ready flag and insert
the descriptor into the ring, giving the NIC permission
to process the descriptor and the frame. The attacker
cannot exchange the pointer after the validation since the

 NIC

NW Driver

T-RX

T-Service

NW
SW1101001...

1101001...
0011101...

T-Queue
1

2

free
free

Figure 3. RX interface. Solid arrows indicate data flow. Dashed arrows
are pointers. Black parallelograms depict descriptors. Black rectangles
are buffers for frames. The dotted line shows the isolation between NW
and SW. The dashed lines indicate the interface between software and
hardware. Components with a grey background are in the TCB.

descriptor is in SW memory, thus preventing Time-of-
check Time-of-use (TOCTOU) attacks.

TX IRQs. For general-purpose hardware, the NW
configures the NIC to issue an IRQ once a frame is trans-
mitted (Sec. 2). However, since our trusted service now
also transmits frames, we would generate IRQs, resulting
in additional (and unnecessary) calls to the IRQ handler in
the NW OS and, thus, jitter. As an alternative, one could
route the NIC IRQs to the SW. In this case, however,
any of the IRQs originating from NW transmissions are
irrelevant to the SW. One would need to inject an IRQ
into the NW [20], resulting in overhead as well. Moreover,
handling and forwarding IRQs tends to be complex and
error-prone, and we want to keep a small TCB.

Thus, we choose to not change the IRQ behavior. If
the NW transmits a frame, an IRQ is handled in the NW
as usual. For the SW traffic, we propose the following
strategy. NIC IRQs can add a significant load on the
system. Therefore, hardware features that can precisely
control IRQ generation are widely available. For example,
most NICs contain an IRQ flag in the descriptor. Only if
the flag is set, the NIC issues IRQs if the descriptor has
been processed. We propose to clear the IRQ flag in the
descriptors inserted into the SW TX ring. Thus, no IRQs
are issued for frames sent from the SW, effectively leading
to a polling approach for the SW [37].

Overall, we argue that assigning one TX ring for
SW traffic is justifiable considering the additional secu-
rity guarantees and depending on the specific use case.
In our evaluation (Sec. 6), we show that the practical
consequences on the NW traffic are small.

5.3. RX Interface

Some NICs support to route frames to a RX ring
based on packet headers [27]. Thus, it is possible to apply
a similar strategy. We could configure the NIC so that
SW frames arrive in a dedicated ring. However, we have
decided against this strategy for the following reasons.
First, we observe that NICs do not necessarily have this
capability. Second, this approach also hinders flexibility
since the NIC’s routing capabilities dictate the number of
data flows we can receive in the SW ring.

We propose a more flexible approach (Fig. 3). Upon
initialization, T-RX prepares the RX rings so that the
descriptors point to buffers in SW memory. When the NIC
receives a frame, the NIC copies it to the next free buffer
and issues an IRQ. Subsequently, the (modified) driver in



the NW OS tries to read the next buffer descriptor in the
RX ring and issues an SMC to T-RX, passing a pointer
to an empty NW buffer and its length as a parameter.

The T-RX module decides on the destination of the
received frame. In the current PoC, we expect the device
owner to allocate a fixed port for a trusted service. We
parse the IP and UDP header and compare the port number
with the trusted service. In a more feature-rich system,
trusted services should be able to listen on protocols
and ports, similar to the socket interface in the NW. We
believe that such mechanisms can be integrated with a
sandboxed TCP/IP stack (Sec. 7). In the case that the
frame is intended for the trusted service, the T-RX module
copies the frame to an input queue (T-Queue, Fig. 3),
clearing the receive buffer for new arrivals. We rely on
an array of frame buffers for the queue. Compared to a
list (with a memory allocator), this only comes with small
additions to the TCB. We set the size to 1MiB. A fitting
size can be determined empirically.

During the next timer tick, the service processes the
data from the queue. From the perspective of the NW, the
buffer still contains zeroes after the SMC. For the NW
driver, it appears as if it has received a packet consisting
of zeros. Since this is not a valid packet, it is dropped.

We route a frame to the NW if it is not intended for the
SW. We first validate that the pointer to the NW buffer
references NW memory with a given length. The NIC
stores the length of the received frame in the descriptor.
Subsequently, we answer the NW driver’s request to the
next buffer descriptor in the RX ring with a descriptor
that points to the NW buffer (2, Fig. 3) instead of the SW
buffer. We do not interfere with RX IRQs (Sec. 5.2).

CNA for RX. Our RX interface complies with CNA
if we can ensure that the NW can only process received
frames if the SW can do so as well (Sec. 4). Similar to
TX (Sec. 5.2), the T-MMIO module blocks any attempt
from the NW to (1) configure the NIC to use other RX
rings, (2) change the structure or size of RX rings, (3)
unreasonably decrease the maximum frame size, and (4)
change the interpretation of the frames in RAM. T-MMIO
can reliably detect a NIC reset to refresh the positions at
which we expect the descriptor of the next received frame.

Every frame that the NIC receives is directly written
to SW memory to which the NW has no access. Due to
the T-MMIO module, an attacker cannot force the NIC
to use malicious rings in the NW. Thus, the only option
to access the RX rings and receive data in the NW is
via the T-RX module. However, if the T-RX module is
called via an SMC, received SW frames are processed,
inserted into T-Queue, and forwarded to the trusted
service. Therefore, the RX interface complies with CNA
if SW frames can be inserted into T-Queue.

We pay special attention to the case that T-Queue is
full. When the NIC receives a SW frame and the queue
is full, the frame is discarded as common in networking.
Notably, we also drop a received frame for the NW if the
queue is full, even though the frame would never have
been inserted into T-Queue. This way we ensure that
the RX interface complies with CNA during congestion.

We note that an attacker might choose to refrain from
issuing a SMC to handle a RX IRQ. Consequently, T-RX
is not invoked. Strikingly, this does not break CNA, since
the NW cannot receive any frames. Alternatively, we could

also use a polling approach similar to TX and use a queue
to pass traffic to the NW.

5.4. Optimizations

Dynamic Timer Frequency. We do not rely on con-
stant timer ticks for T-Service but instead utilize dy-
namic timer ticks. With each invocation of T-Service,
we measure the fill levels of the descriptor rings. If the
levels exceed a configurable threshold, we assume a high
volume of traffic and increase the timer frequency (up
to a configurable maximum) to process the traffic more
quickly. Conversely, if the fill levels fall, we reduce the
timer frequency again (down to a configurable minimum).
By tweaking these settings, one can flexibly optimize our
system for maximum performance or minimal jitter.

Batch Processing Descriptors. Inspired by existing
literature [32], we implement the T-TX and the T-RX
module to work with batches of descriptors, reducing the
number of context switches between the worlds. With one
transmit request of the NW, for example, we process every
descriptor that is ready for transmission at that time.

6. Evaluation

6.1. Proof of Concept

We implement a PoC on a Nitrogen8M board with an
NXP i.MX8M ARMv8-A CPU and 2GB of RAM. The
board has a Freescale Ethernet NIC (Atheros AR8035
PHY), which supports speeds up to 1000 Mbit/s. The
Central Security Unit (CSU) allows assigning peripherals
to a world. We use the i.MX fork of Trusted Firmware-A
(TFA), v2.2, as a secure monitor (Sec. 5) and assign the
NIC to the SW during the boot process, before the NW
OS is started. In the NW, we use Linux (v5.10.63).

We implement our modules T-MMIO, T-TX, T-RX,
T-Timer (Fig. 1), and T-Queue (Fig. 3) as C modules
linked to TFA. We register entry points for SMCs in
T-MMIO, T-TX, and T-RX with TFA, which allows the
NW to call them. In our PoC, we also link T-Service
directly to TFA. Without loss of generality, the CNA-
compliant Ethernet interface can be exported to the rest
of the SW, i.e., the SW OS and its applications, as well.
We enable the timer in TFA and call T-Service in the
timer handler. We replace the memcpy in TFA with an
optimized version from ARM [5].

6.2. Performance

We evaluate our system in a test network. As a router,
we use a lightly loaded AVM FritzBox! 7390. We set up an
IPv4 network where the devices are in the same subnet and
are assigned static addresses. We connect our development
board and a ThinkPad T14s laptop, subsequently referred
to as the host, via Ethernet to the router. The host has
a Core i7-10610U CPU, 32GB DDR4 RAM, and an
Intel I219-V NIC. Our baseline is a system without any
modifications to the network stack or the SW.

We implement a packet generator that saturates the
link with MTU-sized UDP packets. We also implement a
receiver, which calculates the throughput over the last 10s.



TABLE 1. SINGLE FLOW PERFORMANCE.

Experiment TX RX
Baseline Ours Baseline Ours

TNW [Mbit/s] 956.41 956.32 947.86 949.05
TSW [Mbit/s] - 937.24 - 948.78

LNW [ms] 1.65 1.61 1.60 1.59
LSW [ms] - 10.00 - 9.87

TABLE 2. MULTI FLOW PERFORMANCE.

Experiment NW SW Sum

STX [Mbit/s] 20.95 935.46 956.51
SRX [Mbit/s] 476.72 480.39 957.11

For the generator and receiver, we implement a variant for
Linux and for our trusted service. For each experiment, we
measure 20 iterations and average the results. The standard
deviation is insignificant in every experiment.

Additionally, we measure the latency in both directions
and for both worlds by echoing a single UDP packet while
measuring the RTT. Again, we measure 20 iterations and
average the results, with insignificant standard deviations.

For our baseline, we measure the NW throughput
TNW when the device runs the generator and the host
the receiver (TX, Tab. 1) or vice versa (RX, Tab. 1). We
measure the NW latency LNW when the device sends
the test packet (TX, Tab. 1) or echos it back (RX, Tab. 1).
We repeat TNW and LNW with our system (Ours, Tab. 1)
and also measure the throughput and latency of our trusted
service (TSW and LSW ).

As Tab. 1 shows, our system does barely impact the
throughput or latency of NW traffic. Interestingly, we even
measure a slightly higher NW throughput during RX.
We suspect that the aggressive and uninterruptable batch
processing of incoming frames in the SW is the reason.

We reach 98% of the throughput in our trusted service
when transmitting frames and 99.97% when receiving
data. Compared to the NW, our trusted service has a
higher network latency. We insert the frame into a queue
(Sec. 5.3) and process it only at the next timer tick. The
value of around 10ms matches the timer frequency in our
latency experiment and, thus, our expectations. We note
that for use cases in the realm of high-end IoT devices,
networking infrastructure, industrial control systems, and
automotive systems (Sec. 5), this latency is in the mag-
nitude of pinging a remote server. If lower latencies are
required, one could increase the execution frequency of
the trusted service (Sec. 5.4) at the expense of higher jitter
for the NW OS, or switch to an IRQ-based approach in
the future (Sec. 7). Despite the higher latency, the sys-
tem achieves near-native throughput. We deem the batch
processing of buffer descriptors responsible (Sec. 5.4).

To show that the NW cannot monopolize the NIC by
excessive traffic, we also measure multiple simultaneous
flows (Tab. 2). STX shows the throughput when we send
frames in the SW and the NW concurrently. Through
aggressive sending and polling, we prioritize SW traffic.
Consequently, the NW can only send data at 21Mbit/s if
the SW continuously transmits data (without any break).
We scale the frequency between 20Hz and 170Hz. Dur-

ing the throughput benchmarks, the frequency is gradually
increased to 170Hz, which we empirically determine as
the lowest frequency at which the SW saturates the link.
By tweaking the frequency settings, the prioritization of
SW traffic can be adjusted to the use case.

In SRX , we add a second host (a second Nitrogen8M
board) to the network. Subsequently, one host transmits
data to the SW of our evaluation board, while the other
transmits data to the NW. Both send at full line rate. We
observe that the throughput per world is roughly cut in
half and presume that the router distributes the traffic in a
round-robin fashion. SRX shows that if SW frames reach
the device, they are processed alongside the NW frames,
even if the link is saturated. This conforms to CNA.

6.3. Trusted Computing Base

We use cloc (version 1.82) to count the LoC of our
core modules T-Timer, T-MMIO, T-TX, T-RX (Fig. 1),
and T-Queue (Fig. 3). Our modules comprise only 992
LoC in total. Together, these provide a CNA-capable Eth-
ernet interface to the SW. T-Service is an exemplary
trusted service and contains logic for performance bench-
marking purposes, which is not required for functionality.
To implement a trusted service, one would either replace
this code with the actual application logic or export the
CNA-compliant Ethernet interface to the SW OS and link
the trusted service against it. Of course, depending on
the size of the actual trusted service, the TCB increases.
Therefore, we do not include T-Service in our calcu-
lations. We note that TFA, on which we base our system,
comprises 12.5 kLoC. Therefore, we increase the TCB by
less than 7.93%. We also note that the Ethernet driver in
the NW consists of 4.3 kLoC, showing that our split-driver
approach effectively reduces the additions to the TCB.

7. Discussion and Future Work

Portability. Our system requires ARM TrustZone and
a DMA-based NIC with multiple TX rings and fine-
granular IRQ control. Most NICs use DMA [37]. To the
best of our knowledge, most modern NICs support multi-
ple TX queues and fine-granular IRQ control, suggesting a
wide applicability. Porting our system to other platforms is
left for future work. Moreover, we are currently focusing
on systems with a single NIC. For systems with multiple
NICs, CNA can be applied individually to each of them.
We believe that synchronization between the NICs allows
achieving system-wide CNA for multi-NIC systems. The
integration is future work.

Denial of Service. An attacker can either flood the
device with NW traffic or have determined which traffic is
routed to the SW and attempt to flood the SW. If the traffic
is passed to the NW, the network stack consumes CPU and
memory. In the case of SW traffic, the data is processed
during the next timer tick, which also consumes resources.
We follow existing literature [17], [40] and argue that
denial-of-service attacks can (only) be countered at the
infrastructure level, which is out of our scope (Sec. 3).
We still discuss one particular attack vector. The attacker
could attempt to flood T-Queue (Sec. 5.3) to cause
legitimate SW frames to be dropped (due to a full queue)
while allowing malicious NW frames to continue being



processed. To rule out this attack, we only forward frames
to the NW if the T-Queue is not already filled, ensuring
CNA for the RX interface.

Timed Attacks. By flooding the device with traffic in
time patterns, an adversary can enforce windows during
which they can communicate with the device (e.g., to
transmit new commands), and block any communication
otherwise. However, we argue that (1) flooding attacks
may be mitigated at the infrastructure level and (2) SW
traffic is still processed within the time windows, conform-
ing to CNA. Nevertheless, timed attacks should be kept
in mind when implementing trusted services. Achieving
unconditional network availability (for trusted services) is
out of scope if not impossible (Sec. 3).

IRQ-Based SW Interface. Generally speaking, a
polling-based approach for handling the SW traffic wastes
CPU cycles and slows the scheduling of NW processes
on the same core. In this work, we deliberately refrain
from an IRQ-based approach. This is because handling
and distributing IRQs between the NW and the SW would
add a lot more complexity, is error-prone, and increases
the TCB. To mitigate the negative effects, we propose a
dynamic polling frequency (Sec. 5.4). Nevertheless, op-
tions for IRQ-based designs are interesting for the future.

Complex Transmission Protocols. Currently, our sys-
tem processes Ethernet frames in the SW. More complex
protocols such as TCP/IP are not yet supported. However,
we note that we have successfully solved the challenging
task of secure CPU-to-NIC communication and can effec-
tively multiplex a single NIC between the worlds while
adhering to CNA. Building upon Ethernet send and receive
primitives, further protocols can be implemented in an
isolated address space [18], [42], [44] or an enclave [28],
[36], shielded from any peripheral and other software. The
integration is an interesting direction for future work.

8. Related Work

TZNIC is most closely related to our system [37]. Wan
et al. follow similar goals, suggesting multiplexing the
NIC between NW and SW. They adopt an approach that
requires no modifications to the NW, while we propose
small changes. However, the most decisive difference
is that TZNIC only supports receiving frames in the
SW, whereas we support both transmitting and receiving
frames. With TZNIC, a sender might need to transmit a
frame multiple times until the SW can get hold of it. This
is due to the NW dealing with the packets before the SW
can process them. Our system is immune to this limitation,
since the NIC directly stores the received frames in the
SW, to which the NW has no access.

Focusing on consumer routers, Schwarz splits the NIC
driver and moves some components (e.g., routing and
firewalling) to the SW to protect their integrity [32].
While Schwarz does not focus on any form of network
availability, we believe that CNA could be integrated.

Software-based solutions like VirtIO [30], which can
provide a virtualized NIC to a Virtual Machine (VM),
are widely available. Typically, the hypervisor includes a
fully-featured driver for a physical NIC and multiplexes
the traffic. Most systems supporting TrustZone inherently
support assigning peripherals to the SW. However, as-
signing a device to a TEE becomes challenging if the

device is connected to a complex bus system (e.g., PCIe).
Hardware-based solutions like Single Root I/O Virtual-
ization (SR-IOV) address this and allow dividing a single
physical NIC into multiple Virtual Functions (VFs), en-
abling direct communication from a VM to the NIC. Fur-
ther, the TEE Device Interface Secure Protocol (TDISP)
allows establishing a trust relationship between an isolated
execution environment and a peripheral, while encrypting
the data flow between them [25]. Besides hypervisors,
other high-privileged execution contexts have been used
for networking as well. Wang et al. [38] and Zhang et
al. [43] propose to include NIC drivers in the System Man-
agement Mode (SMM) on x86/AMD64 and Liu et al. [23]
implement a complete NIC driver in the TrustZone. All
these approaches introduce a complex NIC to the TCB. In
contrast, we follow an existing line of argumentation [20],
[32], [37] and rely on a split-driver model to keep the
additions to the TCB small.

As an alternative to splitting drivers, several ap-
proaches propose record-and-replay as a strategy to gen-
erate TEE-based drivers [15], [41]. They replicate device
interactions using previously recorded behavior templates.
However, NIC drivers are complex and heavily rely on
DMA and IRQs, posing a challenge for these approaches.
While Guo et al. state NIC drivers are out of scope [15],
the authors of LDR believe that their system might, with
additional work, be applicable to NIC drivers [41].

9. Conclusion

We observe that trusted services often require com-
munication with a trusted party. However, typical systems
rely on a network agent in the REE to forward traffic,
giving up any form of network availability. To prevent an
NW attacker from monopolizing the network channel, we
introduce CNA as a novel concept for TEE-based network
I/O. Based on a split-driver approach, we multiplex a
complex Ethernet NIC between TEE and REE while guar-
anteeing that the TEE can process network I/O whenever
the REE can. CNA has applications in remote device
management, system monitoring, and intrusion detection,
where obstructing TEE connectivity can lead to adverse
system states. We show that our system achieves near-
native throughput while keeping the TCB small.

Major upcoming architectures for confidential comput-
ing (e.g., AMD SEV-SNP [2], Intel TDX [11], and ARM
CCA [21]) primarily focus on confidentiality and integrity,
whereas availability is less prominent. This leaves us with
similar conditions for network I/O. Therefore, we believe
that both the concept of CNA and our implementation
strategy are relevant for describing and building secure
systems in the future.

Acknowledgements

We thank the reviewers and our shepherd for the
valuable feedback. This research was partly supported
by the German Federal Ministry of Education and Re-
search (BMBF) as part of the CELTIC-NEXT project
AI-NET-ANTILLAS (“Automated Network Telecom In-
frastructure with inteLLigent Autonomous Systems”,
Förderkennzeichen “16KIS1314”).



References

[1] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas
Nyman, Andrew Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik.
C-FLAT: Control-Flow Attestation for Embedded Systems Soft-
ware. In Proceedings of the 23rd ACM Conference on Computer
and Communications Security, CCS ’16, pages 743–754. ACM,
2016.

[2] Advanced Micro Devices Inc. AMD Secure Encrypted Virtual-
ization (SEV). https://www.amd.com/de/developer/sev.html, 2020.
Accessed 2024-03-17.

[3] Fritz Alder, Jo Van Bulck, Frank Piessens, and Jan Tobias
Mühlberg. Aion: Enabling Open Systems through Strong Avail-
ability Guarantees for Enclaves. In Proceedings of the 27rd ACM
Conference on Computer and Communications Security, CCS ’21,
pages 1357–1372. ACM, 2021.

[4] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard,
Elie Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halder-
man, Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz
Lever, Zane Ma, Joshua Mason, Damian Menscher, Chad Seaman,
Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding the Mirai
Botnet. In Proceedings of the 26th USENIX Security Symposium,
USENIX Sec ’17, pages 1093–1110. USENIX Association, 2017.

[5] ARM Limited. ARM Optimized Routines. https://github.com/
ARM-software/optimized-routines, 2017. Accessed 2024-03-08.

[6] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi,
Christian Wachsmann, and Patrick Koeberl. TyTAN: tiny trust
anchor for tiny devices. In Proceedings of the 52nd Annual Design
Automation Conference, DAC ’15, pages 34:1–34:6. ACM, 2015.

[7] Marcel Busch, Aravind Machiry, Chad Spensky, Giovanni Vigna,
Christopher Kruegel, and Mathias Payer. TEEzz: Fuzzing Trusted
Applications on COTS Android Devices. In Proceedings of the
44th IEEE Symposium on Security and Privacy, S&P ’23, pages
1204–1219. IEEE, 2023.

[8] Marcel Busch, Ralph Schlenk, and Hans Heckel. TEEMo: trusted
peripheral monitoring for optical networks and beyond. In Proceed-
ings of the 4th Workshop on System Software for Trusted Execution,
SysTEX ’19, pages 7:1–7:6. ACM, 2019.

[9] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto.
SoK: Understanding the Prevailing Security Vulnerabilities in
TrustZone-assisted TEE Systems. In Proceedings of the 41st IEEE
Symposium on Security and Privacy, S&P ’20, pages 1416–1432.
IEEE, 2020.

[10] Yaohui Chen, Yuping Li, Long Lu, Yueh-Hsun Lin, Hayawardh
Vijayakumar, Zhi Wang, and Xinming Ou. InstaGuard: Instantly
Deployable Hot-patches for Vulnerable System Programs on An-
droid. In Proceedings of the 25th Annual Network and Distributed
System Security Symposium, NDSS ’18. The Internet Society, 2018.

[11] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman
Ahmed, Zhongshu Gu, Hani Jamjoom, Hubertus Franke, and James
Bottomley. Intel TDX Demystified: A Top-Down Approach. CoRR,
abs/2303.15540, 2023.

[12] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Sanctum:
Minimal Hardware Extensions for Strong Software Isolation. In
Proceedings of the 25th USENIX Security Symposium, USENIX
Security ’16, pages 857–874. USENIX Association, 2016.

[13] Linux Kernel Developers. PHY Abstraction Layer. https://www.
kernel.org/doc/Documentation/networking/phy.txt, 2008. Accessed
2024-04-20.

[14] GlobalPlatform Inc. TEE Sockets API Specification 1.0.
https://globalplatform.org/wp-content/uploads/2017/01/GPD
TEE-Sockets-API- v1.0.pdf, 2015. Accessed 2024-03-11.

[15] Liwei Guo and Felix Xiaozhu Lin. Minimum viable device
drivers for ARM trustzone. In Proceedings of the 17th European
Conference on Computer Systems, EuroSys ’22, pages 300–316.
ACM, 2022.

[16] Stephen Herwig, Katura Harvey, George Hughey, Richard Roberts,
and Dave Levin. Measurement and Analysis of Hajime, a Peer-to-
peer IoT Botnet. In Proceedings of the 26th Annual Network and
Distributed System Security Symposium, NDSS ’19. The Internet
Society, 2019.

[17] Manuel Huber, Stefan Hristozov, Simon Ott, Vasil Sarafov, and
Marcus Peinado. The Lazarus Effect: Healing Compromised De-
vices in the Internet of Small Things. In Proceedings of the 15th
ACM Asia Conference on Computer and Communications Security,
ASIA CCS ’20, pages 6–19. ACM, 2020.

[18] Eunyoung Jeong, Shinae Woo, Muhammad Asim Jamshed, Hae-
won Jeong, Sunghwan Ihm, Dongsu Han, and KyoungSoo Park.
mTCP: a Highly Scalable User-level TCP Stack for Multicore
Systems. In Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation, NSDI ’14, pages
489–502. USENIX Association, 2014.

[19] Benedikt Jung, Christian Eichler, Jonas Röckl, Ralph Schlenk,
Timo Hönig, and Tilo Müller. Trusted Monitor: TEE-Based System
Monitoring. In Proceedings of the 12th Brazilian Symposium on
Computing Systems Engineering, SBESC ’22, pages 1–8. IEEE,
2022.

[20] Matthew Lentz, Rijurekha Sen, Peter Druschel, and Bobby Bhat-
tacharjee. SeCloak: ARM Trustzone-based Mobile Peripheral Con-
trol. In Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys ’18, pages
1–13. ACM, 2018.

[21] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh,
Yousuf Sait, and Gareth Stockwell. Design and Verification of
the Arm Confidential Compute Architecture. In Proceedings of
the 16th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’22, pages 465–484. USENIX Association,
2022.

[22] Linaro Limited. OP-TEE Documentation. https://optee.
readthedocs.io/en/latest/index.html, 2023. Accessed 2024-03-13.

[23] Dongtao Liu and Landon P. Cox. VeriUI: attested login for
mobile devices. In Proceedings of the 15th Workshop on Mobile
Computing Systems and Applications, HotMobile ’14, pages 7:1–
7:6. ACM, 2014.

[24] Ramya Jayaram Masti, Claudio Marforio, Aanjhan Ranganathan,
Aurélien Francillon, and Srdjan Capkun. Enabling trusted schedul-
ing in embedded systems. In Proceedings of the 28th Annual
Computer Security Applications Conference, ACSAC ’12, pages
61–70. ACM, 2012.

[25] PCI-SIG. TEE Device Interface Security Protocol (TDISP). https://
pcisig.com/tee-device-interface-security-protocol-tdisp, 2022. Ac-
cessed 2024-04-24.

[26] Sandro Pinto, Jorge Pereira, Tiago Gomes, Mongkol Ekpanyapong,
and Adriano Tavares. Towards a TrustZone-Assisted Hypervisor
for Real-Time Embedded Systems. IEEE Comput. Archit. Lett.,
16(2):158–161, 2017.

[27] Solal Pirelli and George Candea. A Simpler and Faster NIC Driver
Model for Network Functions. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementation,
OSDI ’20, pages 225–241. USENIX Association, 2020.

[28] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou
Zhu, Shujie Cui, Vasily A. Sartakov, and Peter R. Pietzuch. SGX-
LKL: Securing the Host OS Interface for Trusted Execution. CoRR,
abs/1908.11143, 2019.

[29] Jonas Röckl, Mykolai Protsenko, Monika Huber, Tilo Müller,
and Felix C. Freiling. Advanced System Resiliency Based on
Virtualization Techniques for IoT Devices. In Proceedings of the
37th Annual Computer Security Applications Conference, ACSAC
’21, pages 455–467. ACM, 2021.

[30] Rusty Russell. virtio: towards a de-facto standard for virtual I/O
devices. ACM SIGOPS Oper. Syst. Rev., 42(5):95–103, 2008.

[31] Samsung Electronics Co.Ltd. Whitepaper: Samsung Knox Secu-
rity Solution. https://images.samsung.com/is/content/samsung/p5/
global/business/mobile/SamsungKnoxSecuritySolution.pdf, 2017.
Accessed 2024-02-13.

[32] Fabian Schwarz. TrustedGateway: TEE-Assisted Routing and Fire-
wall Enforcement Using ARM TrustZone. In Proceedings of the
25th International Symposium on Research in Attacks, Intrusions
and Defenses, RAID ’22, pages 56–71. ACM, 2022.



[33] Brent E. Stephens, Arjun Singhvi, Aditya Akella, and Michael M.
Swift. Titan: Fair Packet Scheduling for Commodity Multiqueue
NICs. In Proceedings of the 2017 USENIX Annual Technical Con-
ference, USENIX ATC ’17, pages 431–444. USENIX Association,
2017.

[34] Zhichuang Sun, Bo Feng, Long Lu, and Somesh Jha. OAT: At-
testing Operation Integrity of Embedded Devices. In Proceedings
of the 41st IEEE Symposium on Security and Privacy, S&P ’20,
pages 1433–1449. IEEE, 2020.

[35] JSOF Tech. Ripple20 - CVE-2020-11901. https:
//www.jsof-tech.com/wp-content/uploads/2020/08/Ripple20
CVE-2020-11901-August20.pdf, 2020. Accessed 2024-04-25.

[36] Jörg Thalheim, Harshavardhan Unnibhavi, Christian Priebe,
Pramod Bhatotia, and Peter R. Pietzuch. rkt-io: a direct I/O stack
for shielded execution. In Proceedings of the Sixteenth European
Conference on Computer Systems, EuroSys ’21, pages 490–506.
ACM, 2021.

[37] Shengye Wan, Kun Sun, Ning Zhang, and Yue Li. Remotely
controlling TrustZone applications?: a study on securely and re-
siliently receiving remote commands. In Proceedings of the 14th
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, WiSec ’21, pages 204–215. ACM, 2021.

[38] Jiang Wang, Fengwei Zhang, Kun Sun, and Angelos Stavrou.
Firmware-assisted Memory Acquisition and Analysis tools for Dig-
ital Forensics. In Proceedings of the Sixth International Workshop
on Systematic Approaches to Digital Forensic Engineering, SADFE
’11, pages 1–5. IEEE Computer Society, 2011.

[39] Jinwen Wang, Ao Li, Haoran Li, Chenyang Lu, and Ning Zhang.
RT-TEE: Real-time System Availability for Cyber-physical Sys-
tems using ARM TrustZone. In Proceedings of the 43rd IEEE

Symposium on Security and Privacy, S&P ’22, pages 352–369.
IEEE, 2022.

[40] Meng Xu, Manuel Huber, Zhichuang Sun, Paul England, Marcus
Peinado, Sangho Lee, Andrey Marochko, Dennis Mattoon, Rob
Spiger, and Stefan Thom. Dominance as a New Trusted Computing
Primitive for the Internet of Things. In Proceedings of the 40th
IEEE Symposium on Security and Privacy, S&P ’19, pages 1415–
1430. IEEE, 2019.

[41] Huaiyu Yan, Zhen Ling, Haobo Li, Lan Luo, Xinhui Shao, Kai
Dong, Ping Jiang, Ming Yang, Junzhou Luo, and Xinwen Fu.
LDR: Secure and Efficient Linux Driver Runtime for Embedded
TEE Systems. In Proceedings of the 2024 Annual Network and
Distributed System Security Symposium, NDSS ’24. The Internet
Society, 2024.

[42] Ethan G. Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. The True Cost
of Containing: A gVisor Case Study. In Proceedings of the 11th
USENIX Workshop on Hot Topics in Cloud Computing, HotCloud
’19. USENIX Association, 2019.

[43] Fengwei Zhang, Jiang Wang, Kun Sun, and Angelos Stavrou.
HyperCheck: A Hardware-Assisted Integrity Monitor. IEEE Trans.
Dependable Secur. Comput., 11(4):332–344, 2014.

[44] Lingjun Zhu, Yifan Shen, Erci Xu, Bo Shi, Ting Fu, Shu Ma,
Shuguang Chen, Zhongyu Wang, Haonan Wu, Xingyu Liao, Zhen-
dan Yang, Zhongqing Chen, Wei Lin, Yijun Hou, Rong Liu, Chao
Shi, Jiaji Zhu, and Jiesheng Wu. Deploying User-space TCP at
Cloud Scale with LUNA. In Proceedings of the 2023 USENIX
Annual Technical Conference, USENIX ATC ’23, pages 673–687.
USENIX Association, 2023.


