
duet: Combining a Trustworthy Controller with a
Confidential Computing Environment

Istemi Ekin Akkus
Nokia Bell Labs

Ivica Rimac
Nokia Bell Labs

Abstract—Traditionally, sensitive data is protected with en-
cryption in transit and at rest. Confidential Computing by
means of hardware-based Trusted Execution Environments
(TEEs) enables organizations to protect their data also in
use, such that the owner of a TEE application can ensure its
integrity via remote attestation. Process-based TEEs (e.g.,
Intel SGX) allow the integrity check to be performed by
other users besides the owner, but require re-architecting
the application and lack support for specialized hardware
(e.g., GPUs). In contrast, virtual machine (VM)-based TEEs
can run entire operating systems confidentially, with access
to specialized hardware and ease of use without modifications
to applications, but only offer an attestation based on the
initial state of the VM.

In this paper, we propose duet, combining the advantages
of process-based and VM-based TEEs; thus, simultaneously
providing runtime integrity, ease of use and flexibility. In duet,
a process-based TEE application implements a trustworthy
controller that acts as the agent of the application owner
to deploy and maintain a confidentiality-offering service on
a Confidential VM (CVM). As such, any administrative
operations conducted on the CVM are performed only by the
trustworthy controller. By combining the runtime attestation
of the controller application and its logs of the administrative
CVM operations, third-party users can have more confidence
on the CVM’s (and the service’s) integrity. At the same time,
application owners can benefit from specialized hardware
supported by the CVM, the ease of use when deploying
applications and the flexibility it offers in terms of runtime
maintenance.

1. Introduction

Safeguarding data in transit and at rest has long
been a cornerstone of security measures in the realm of
cloud computing. As organizations increasingly entrust
their sensitive data and workloads to cloud environments,
protecting data in use has become a critical concern [7],
[15], [18], [29]. Confidential computing offers a transfor-
mative solution to this challenge by leveraging hardware-
based Trusted Execution Environments (TEEs) to provide
integrity and confidentiality protection for sensitive com-
putations [17]. Through remote attestation [16], the owner
of an application running in a TEE can verify its integrity,
thus, establish trust in the confidentiality and integrity of
the computations performed within it.

Underlying the concept of confidential computing is
the delineation of trust between two entities: the ap-
plication owner, who establishes trust in the computing

environment, and the platform operator, who manages
the infrastructure. However, in many scenarios, the TEE
application provides a service to a user, a third party with
whom the application/service owner has a transactional
relationship. The arising challenge is then to extend the
trust established by the owner in the TEE to the service
user: the user must also be assured of the environment’s
integrity to convince them that their interactions with the
service occur in a secure and confidential manner.

Today, application owners can choose between two
primary technical solutions that have emerged: process-
based TEEs (e.g., Intel SGX) that isolate processes, and
virtual machine (VM)-based TEEs (e.g., AMD SEV-SNP,
Intel TDX) that isolate entire operating systems (OS).
Each approach offers distinct advantages and considera-
tions. Process-based TEEs enable the relay of attestation
quotes and offer a granular level of transparency, allowing
a user to reason about the runtime state of the applica-
tion; thus, establishing trust [32]. However, such TEEs
require re-architecting the application or using a library
OS [48], [49], making it inflexible and limiting for existing
applications. In comparison, VM-based TEEs support a
wider range of hardware (e.g., GPUs) and provide greater
flexibility as well as ease of use for the service owner,
because the applications do not need to be modified.
However, they present challenges in extending trust to
all stakeholders: the service owner can interact with the
VM at runtime after the attestation of the initial VM
state [2] without the service user’s awareness, potentially
undermining trust in the integrity and confidentiality.

One approach to tackle this challenge is the customiza-
tion of the VM image loaded into the VM-based TEE, so
that the service software is loaded and all interfaces other
than those provided by the service are disabled during
initialization of the VM [21]. This approach demands
meticulous attention and expertise given the complexity
and possibilities of a modern OS, and any update to the
service requires the creation and attestation of a new OS
image. Another approach is the use of a virtual Trusted
Platform Module (vTPM) [41], [46], such that the TPM
configuration of a VM only allows the loading and execu-
tion of correct and intended software: a service user then
receives not only the VM’s attestation report but also the
vTPM state, so that they have increased confidence that
the confidentiality-offering service is not interfered with.
However, creating such a TPM configuration is typically
outside the expertise of the service owner and users.

In this paper, we propose an alternative approach as a
primitive for confidentiality-offering services. Our system,
duet, combines the runtime transparency of a process-



based TEE with the flexibility of a Confidential Virtual
Machine (CVM). In duet, a process-based TEE (e.g.,
Intel SGX) application acts as a mediator and a controller
on behalf of the service owner: it launches the CVM with
a well-known OS image (e.g., Ubuntu CVM [50]), which
has been presumably scrutinized by more developers com-
pared with a custom image, and performs all administra-
tive tasks at runtime (e.g., deployment and maintenance
of service). The controller application executes publicly
available code with a well-known interface and a small
trusted computing base, allowing easy verification and
trust establishment by remote attestation [32].

The next section provides the motivation for our work
followed by related work in Section 3. We then present
the design of duet and its implementation in Sections 4
and 6, respectively. We conclude with a discussion and
directions for future work in Section 7. The source code
of duet is publicly available [45].

2. Motivation & Goals

Here, we present our general terminology, actors and
assumptions we make about them as our threat model. We
also describe motivational use cases and our goals.

2.1. Terminology & Actors

We have the following actors. The service owner
operates an application (i.e., develop, deploy, maintain).
We assume that the application’s main benefit is that it
offers confidentiality to its users, whereby the users use the
service without exposing their confidential/private assets
(e.g., data, code) to the service or infrastructure (e.g.,
confidential ML training [27], [36], [40], [52]).

A service user interacts with the confidentiality-
offering service to perform actions offered by the applica-
tion. These actions may operate on the confidential/private
assets of the user; thus, the user requires that the assets
are handled in a confidential manner with TEEs and that
these TEEs with the service code running on them to be
attested. For example, with Intel SGX, the user may verify
the integrity of SGX enclaves by remote attestation [32].
Similarly, with CVMs running on AMD SEV-SNP or Intel
TDX, the user may verify the CVM’s initial state with a
well-known image (e.g., Ubuntu 22.04 CVM) [2], [8].

Besides these main actors, the infrastructure
provider supplies the underlying TEE resources (e.g.,
cloud offering, on-premise server) to the service owner,
but does not interact with the service owner nor with
service users during service operation.

2.2. Threat Model & Assumptions

We assume, for a confidentiality-offering service using
TEEs, the service code and its package dependencies are
publicly available (e.g., open-source). Some packages may
not be open-source (e.g., drivers for a GPU); however,
we assume they are well-known and officially endorsed
by their respective providers (e.g., firmware for H-100
confidential GPU signed by NVIDIA). We also assume
that the package managers in the OS check the integrity
of the packages, and only install packages from verified

repositories (e.g., the package manager ‘apt’ for Debian
and Ubuntu compares the checksum of a downloaded
package with the checksum from the ‘Release’ file signed
by the repository maintainer [37]).

We also assume that the infrastructure provider does
not interfere with the mounting of the filesystem (i.e.,
‘rootfs’) during the launch. The attestation report covers
only the firmware, but not the filesystem. There is ongoing
research to ensure that the ‘rootfs’ was mounted without
tampering by encrypting the disk and sharing the key only
after the successful boot [20], [35].

In addition, there may be some variation in the CVM
offerings of cloud providers. For example, Azure offers
CVMs with a closed-source firmware that does not allow
direct access to the TEE hardware (e.g., no /dev/sev).
Instead, it exposes a secure vTPM device, which can be
used to access the attestation reports from VM-based TEE
hardware. One can also use a Microsoft-provided library
to obtain and verify an attestation token via Microsoft
Azure Attestation (MAA), stating that the CVM launched
in a trustworthy manner. The closed-source nature of the
firmware and MAA forces the service owners and users
to also trust Microsoft’s implementation of both [8].

In comparison, a CVM obtained from AWS with
AMD SEV-SNP hardware allows direct access to the TEE
hardware and its attestation report [5]. This report can be
verified via the recommended and open-source ‘snpguest’
tool from Virtee [51]. Similarly, Google Cloud offers both
a software-based vTPM and direct hardware access to
obtain attestation reports for VM-based TEEs (AMD SEV-
SNP and Intel TDX) [22] via tools that are open-source
[23], [24]. In these cases, the service owners and users
not necessarily trust the infrastructure provider.

Many TEE manufacturers take a detailed approach to
patching vulnerabilities in their products [34]. As such,
we assume that the infrastructure provider keeps their
platform up-to-date, and leave side-channel attacks on
TEE hardware (e.g., SGX) outside our scope. One can
also imagine that the trustworthy controller can be offered
as a service from a cloud provider that does not collude
with the service owner (Section 7).

2.3. Motivation for CVMs

Specialized hardware: Confidential GPUs and their
attestations (e.g., NVIDIA H-100) require the use of a
confidential VM using AMD SEV-SNP or Intel TDX tech-
nology [42], [43]. Access to such specialized hardware be-
comes more and more relevant with increasing interest in
trustworthy AI/ML applications [39], [52]. Existing SGX
applications providing confidentiality for their users via
remote attestation cannot utilize such hardware unless they
migrate to a CVM. However, their guarantees for their
users change because the CVM attestation only covers
the initial state of the CVM: service owners will have to
ensure that the current state of the CVM is measured in
the attestation, which is not straightforward (Section 3).
Ease-of-use and flexibility: Modifying a CVM for cus-
tomization or configuring the TPM state are complex
operations. Although cloud providers may provide vTPM
implementations for their offerings, these usually apply to
commonly used OS images, amortizing the effort spent.
A service owner must ensure the confidentiality-offering

2



service code is included in the measurement during the
launch of the CVM [21]. This approach presents at least
two issues: First, every update to the service code or
dependency requires building the image and launching the
CVM again. As a result, the deployment and maintenance
of the confidentiality-offering service can become com-
plex. Second, the service owner has to convince service
users of the validity of the new image and its attesta-
tion measurement values (i.e., the new image is deemed
trusted). Moreover, service users need to be made aware
of the changes, producing additional burden.
Isolation of potentially malicious code: Some
confidentiality-offering services may utilize external
code working on private and confidential assets. This
external code may need to be kept confidential due to
intellectual property rights. For example, an ML platform
may aim that the code is kept confidential [52], or the
analysis on some private datasets may need to stay
confidential [36]. Consequently, this code cannot be
inspected or shared with other collaborators (e.g., data
owners), making it difficult to ensure that it does not leak
private data [4]. Isolating and sandboxing such code using
existing SGX approaches is tricky and limiting at best
[28]. Moreover, existing library OS (libOS) approaches
facilitating easy deployment of applications with SGX
do not consider this threat model [26], [44]: the service
code, the libOS and the potentially malicious code all
run in the same address space, allowing the external code
to secretly modify the inner state of the SGX enclave.
In contrast, a CVM can offer additional tools to restrict
such code and prevent its malicious activities if any.

2.4. Goals

Our goal is to enable a service owner to prove to the
service users that the service is running in a trusted envi-
ronment and its integrity is preserved. We also want the
owner to benefit from using a modern OS for ease of use,
flexibility and confidential GPU access, while reducing
deployment and maintenance effort for the service.

3. Related Work

Remote attestation has been the topic of extensive re-
search in confidential computing [16]. Intel SGX provides
a process-based TEE with the confidentiality boundary
drawn around the application code, which is measured and
included in the attestation quote [30]. A service user can
request the quote from the TEE and verify its initial state,
assuming application code availability to the user. Because
Intel SGX guarantees the integrity of the code running
in the enclave, the user can establish trust also in the
runtime state of the service. Process-based TEEs, however,
do not support lift-and-shift but require extra-effort for
adaptation of applications [48], [49] and lack isolation
mechanisms necessary to sandbox potentially malicious
third-party code that needs to stay confidential [36], [52].

Attestation in VM-based TEEs (e.g., AMD SEV-SNP)
is based on measurements of the VM state after initializa-
tion by the hypervisor, and typically includes only the first
virtual firmware volume [2]. One approach for extending
the trust to other boot-time binaries, including the kernel,

init RAM disk, and kernel command line, has been pre-
sented in [38] and implemented in patches to the QEMU
hypervisor and the virtual firmware OVMF. Another mea-
sured boot approach in AMD SEV-SNP implements a
virtual Trusted Platform Module (vTPM) as a Secure
VM Service Module (SVSM) in the VM firmware [41].
Although these approaches can guarantee the integrity of
boot components, they cannot protect the runtime integrity
of the VM (e.g., when the owner installs other software).

Besides a measured boot, Revelio [21] further provides
runtime integrity of the VM by customizing its image: it is
configured to start with the confidentiality-offering service
on boot with a read-only filesystem and to block any
inward connections, so that no outside entity can connect
to it and tamper with any process. However, approaches
based on customization of the VM image per service
require a) operating system expertise from both the service
owner and users (e.g., to build and reproduce the image),
b) rebuilds of the VM image with every change to the
service (e.g., no runtime updates to the service or OS),
and c) support from the cloud provider’s hypervisor. In
contrast, duet refrains from customized VM images, thus,
can be deployed on any cloud and only expects a limited
level of OS knowledge (i.e., basic installation commands
and their expected outcomes).

Following a similar concept to ours, Antonino et al.
[3] propose using a trusted SGX enclave to provision and
attest a CVM. The measurement of the CVM is embedded
into the attestation protocol of the SGX enclave, address-
ing the limitations specific to an older version of the
AMD SEV (i.e., pre-SNP) attestation. These limitations
do not exist anymore in newer AMD SEV-SNP and Intel
TDX attestation procedures [2] used by duet. In addition,
this solution requires the customization of the VM image,
provides evidence of the CVM state only at a specific
point in its lifecycle and assumes that the application runs
for a specific time, producing some data later embedded
in the SGX quote on behalf of the VM. In contrast, duet
targets long-running services and allows users to audit the
state of the CVM at any point, even when the CVM’s
initial state has been updated after initialization.

The Confidential Containers (CoCo) project [19] tar-
gets deploying confidential container workloads in Kuber-
netes. The customized VM image running the containers
includes an agent and a policy framework, covered by
the attestation measurements. By exposing a well-defined
API for deploying/managing the container workloads and
a configurable policy layer, interactions with the trusted
environment are limited and controlled. However, this
approach is specific for container workloads, while duet
provides a general solution to any VM-based workload.

4. Design

In this section, we first present duet’s components
(Section 4.1). We then describe the details of duet’s trust-
worthy controller and its interface (Section 4.2). Section
4.3 explains how the service owner sets up the deployment
of the confidentiality-offering service using the controller.
Finally, we show how service users gain confidence on the
service’s integrity by building the chain of trust starting
from the trustworthy controller (Section 4.4).

3



TABLE 1. DUET’S TRUSTWORTHY CONTROLLER INTERFACE.

API endpoints Purpose Operations Invokable by

/quote Attest controller enclave 1. Produce SGX quote Owner, Users

/start_cvm Start CVM 1. Provision resources for CVM Owner

/run_cvm_commands Deploy and maintain service 1. Install, launch and update service as well as dependencies Owner
2. Record commands and outputs

/mark_cvm Change the CVM mode 1. Record new mode of the CVM Owner
2. Kill long-running processes (when changed to ‘in-update’)

/get_cvm_state Attest CVM’s current state 1. Produce CVM attestation report Owner, Users
2. Return logs of commands and outputs

/stop_cvm Stop service 1. Delete resources for CVM Owner

duet

Trustworthy Controller
(SGX)

Confidential VM
(with service)

4. establish trust
in the service

(via attestation of
controller and its

logs for CVM state)

Service
User

5. share confidential
assets with the service
(via service interface)

Service
Owner

1. launch controller
and attest

2. direct controller
to provision CVM;

deploy and
maintain service

3. provision CVM
and attest;
deploy and

maintain service
(via ssh)

Figure 1. High-level overview of duet.

4.1. duet Components

Figure 1 shows the high-level overview of a service
that is deployed using duet. There are two components
that work together to enable the service users establish
trust in the service for their confidential/private assets.
Confidential Virtual Machine (CVM): The CVM is a
standard VM running a well-known OS image instantiated
on a VM-based TEE hardware (e.g., Ubuntu 22.04 CVM
on AMD SEV-SNP or Intel TDX). As such, it allows the
service owner to benefit from specialized hardware (e.g.,
confidential GPUs) as well as ease of use and flexibility
of a modern OS as supported by the TEE. As a result, the
service owner does not need to re-architect the application
according to specific hardware specifications (e.g., Intel
SGX) nor does she need to utilize other software (e.g., a
library OS [48], [49]) to retrofit it.
Trustworthy Controller: The controller is a generic and
simple program that exposes various API endpoints to the
service owner and users (Section 4.2). The controller code
is publicly available and runs in an SGX enclave, so that
a standard remote attestation can be performed on the
enclave and its code. Through its interface, the controller
allows a service owner to initialize and maintain a service.
At the same time, it allows service users to build trust
in the service, by allowing them to inspect the CVM’s
initial state (i.e., via remote attestation) as well as any
actions (and their outputs) applied to the CVM after the
initialization (i.e., via the controller’s logs).

For brevity, we assume that the controller is dealing
with a single service. However, there is no reason why it
cannot be utilized for multiple CVMs (e.g., if the service
requires multiple cooperating CVMs) or for multiple ser-
vices (e.g., if the owner operates multiple services). We
discuss these additional capabilities later (Section 7).

4.2. Controller Interface & Operations

Table 1 summarizes duet’s controller interface API
endpoints, their purposes, the high-level actions taken
by the controller when invoked and who may invoke
them. All communication with the controller happens with
encrypted messages (e.g., TLS). Below, we describe how
a service owner and users can use these API endpoints.

Some endpoints may perform privileged operations
(e.g., provisioning resources for the CVM, installing pack-
ages), such that only the service owner can invoke these
endpoints. During its operation, the controller performs
authentication and authorization. For example, the service
owner may launch the controller in SGX with her public
key as an input, such that it requires the service owner’s
signature for privileged endpoints. For brevity, we do
not further describe this check and only refer to who is
authorized to utilize an endpoint.

/quote: This endpoint returns the standard SGX
attestation quote for the enclave hosting the controller.
It can be invoked by both the service owner and service
users, such that they can establish trust in the controller
via remote attestation [10], [31], [32]. For service users,
this remote attestation is crucial because it enables them
to establish trust in the CVM’s and the service’s runtime
integrity and entrust their confidential/private assets to
the service. In other words, the remote attestation of the
controller forms the root of trust for the service users.

/start_cvm: This endpoint provisions the neces-
sary CVM resources from the underlying infrastructure.
This infrastructure can either be a cloud provider [9]
or a local/on-premise CVM-capable server (e.g., AMD
SEV-SNP, Intel TDX). As such, it can only be invoked
by the service owner. Its input parameters define the
infrastructure (e.g., ‘Azure’, ‘on-premise’), the type of the
CVM (e.g., ‘sev-snp’, ‘tdx’), hardware resources (e.g.,
number of processors, memory size) and the operating
system (OS) image (e.g., Ubuntu 22.04 CVM).

As part of the CVM launch process, the controller
generates a random SSH key for logging into the CVM. It
uses the public part of the SSH key as the only login info
while provisioning the resources from the infrastructure
provider. Note that the private part of the SSH key is not
accessible outside the controller enclave to anyone, in-
cluding the service owner and the infrastructure provider.

After provisioning the resources for the CVM, the con-
troller performs the necessary updates and installations.

4



Afterwards, the controller retrieves and verifies the CVM’s
attestation report [11]–[13], [51], whose HOST_DATA
field can include the public part of the SSH key [1].
The controller then stores the attestation report, which
corresponds to the initial state of the CVM. Finally, the
controller produces an identifier for the CVM that was
launched (e.g., uuid) and returns it, such that the service
owner can perform further actions on this CVM by sup-
plying it as a parameter for other endpoint invocations.

/run_cvm_commands: This endpoint triggers the
controller to log in to the corresponding CVM and execute
a list of commands in the same order given as input. As
such, it is a privileged operation and can only be invoked
by the service owner. The controller logs the requested
commands, executes them remotely on the CVM and
records their outputs as part of the CVM’s state. These
commands and their outputs will be available to service
users, allowing them to inspect the state of the CVM.
To save memory, the controller can encrypt this metadata
with a symmetric key produced by the controller inside
the enclave and persist it in either remote or local storage.

/mark_cvm: This endpoint changes the CVM’s
mode of operation to either ‘in-service‘ or ‘in-update‘
and can only be invoked by the service owner. The
initial mode of a CVM is ‘in-update‘, in which the
run_cvm_commands API is enabled for the service
owner. After the service owner finishes running com-
mands, she marks the CVM as ‘in-service’, in which the
controller disables the run_cvm_commands API. The
controller records any CVM mode change.

If the service owner wants to perform more runtime
updates to a CVM (e.g., upgrading packages, patch-
ing vulnerabilities) when it is ‘in-service‘, she uses the
mark_cvm API endpoint to mark the CVM as ‘in-
update’. Before allowing any commands, the controller
ensures that there are no long-running processes remaining
in the CVM that were started by the service owner. After
the updates are finished, the service owner again marks the
CVM’s mode as ‘in-service’ to start serving users again.

/get_cvm_state: This endpoint can be invoked by
both the service owner and service users, and returns the
current state of the CVM. This state consists of the CVM’s
mode, initial attestation report, the list of commands that
were issued to the CVM and their outputs. For service
users, the combination of these pieces provides enough
information on how the confidentiality-offering service
has been instantiated, run and maintained, such that they
can have confidence on its correctness and integrity.

/stop_cvm: This endpoint stops the CVM hosting
the confidentiality-offering service. It can only be invoked
by the service owner using the CVM’s identifier obtained
after starting the CVM. Note that the metadata belonging
to this CVM can still be kept, such that the service users
can later audit the CVM’s latest state.

4.3. Service Owner Workflow

At a high-level, the deployment and maintenance of a
confidentiality-offering service using duet adheres to the
following workflow. First, the service owner launches the
controller in an Intel SGX enclave (Step 1 in Figure 2),
obtains an attestation quote and verifies it, either using
ECDSA- [10], [32] or EPID-based attestation [30] (Steps

2-5). The code of the controller is publicly available, such
that any service user can reproduce the measurement value
of the enclave included in the quote (i.e., MRENCLAVE).

Once the remote attestation procedure succeeds, the
operator directs the trustworthy controller to launch a
CVM (Step 6). The controller then provisions a VM-based
TEE (i.e., AMD SEV-SNP, Intel TDX) with a well-known
image (e.g., Ubuntu 22.04 CVM), either from a cloud
provider (e.g., Azure [9]) or from an on-premise server
(Step 7). The CVM image can be minimal, such that un-
necessary services are not present. The only requirement
duet has is that the CVM has the SSH server enabled.

Once the CVM is launched, the controller performs
a remote attestation procedure (Steps 8-16), by first ob-
taining the attestation report from the CVM (Steps 12-13)
and then checking it with the attestation service provider
(Steps 14-15). The controller stores the attestation report
to later supply it to service users. Because the initial CVM
image is a well-known open-source image, service users
can also trust the CVM’s initial state. When this attestation
procedure is complete, the controller returns a unique
id to the service owner (Step 16). Note that before the
CVM attestation, the controller may need to perform some
actions on the CVM, such as installing dependencies and
attestation related software [12], [13], [51]. These actions
and their outputs are logged by the controller (Steps 8-11),
like any other command issued by the service owner.

After the CVM attestation, the service owner requests
the controller to execute commands in the CVM to install
the necessary packages and software for the service (Step
17). The controller logs in to the CVM using the SSH key
generated at the launch, runs the commands and collects
their outputs (Steps 14-18). The controller also installs
the confidential service and configures it according to
the specifications (Steps 18-21). When done, the service
owner marks the CVM as ‘in-service’ (Step 23). After
the initial deployment, the owner may also maintain the
CVM and the service by updating packages and software
the same way, after marking the CVM as ‘in-update’
again and letting the controller kill the long-running pro-
cesses started by the owner. Note that these packages and
software are publicly available (e.g., Ubuntu packages),
or well-known and assumed trustworthy (e.g., NVIDIA-
signed firmware for GPUs) [43].

During these operations, the controller records the
commands and their outputs (Steps 18 and 21) as well
as any mode changes. Combined with the CVM’s initial
attestation report (Steps 13-15), these logs of the com-
mands and outputs correspond to the CVM’s latest state,
enabling the service users to audit the CVM’s, and in turn
the service’s, runtime integrity. As a result, duet enables
service owners and users to overcome the limitations of
static attestation reports of CVMs.

4.4. Service User Workflow

Once the confidentiality-offering service is config-
ured by the trustworthy controller, it starts serving users.
The users interact with the CVM as defined by the
confidentiality-offering service. Before the users trust the
CVM and the service with their confidential/private assets,
they first need to establish trust in them. The high-level
workflow of a service user establishing trust in the CVM

5



Attestation Service Provider
(e.g., MAA)

Trustworthy Controller
(SGX) Confidential VM

loop [for each dependency for attestation report]

loop [for each command]

1. launch Trustworthy Controller with SGX

2. /quote

3. SGX quote

4. verify SGX quote

5. SGX quote OK
6. /start_cvm

7. provision resources for CVM

8. log command for cvm_id

9. run command

10. command output

11. log output for cvm_id

12. request CVM attestation report

13. attestation report14. verify CVM attestation report

15. CVM attestation OK

16. started CVM with cvm_id

17. /run_cvm_commands:
install, launch and update service as well as dependencies

18. log command for cvm_id

19. run command

20. command output

21. log output for cvm_id

22. OK

Service Owner

23. /mark_cvm as 'in-service'

Figure 2. Service owner workflow to deploy and maintain the confidentiality-offering service via duet.

and the service is depicted in Figure 3. The users first
establish trust in the controller via SGX remote attestation
(Steps 1-4 in Figure 3); trust is subsequently extended to
the CVM and the confidentiality-offering service running
on it: the CVM was started from a well-known state
available via its attestation report, and any subsequent
updates to the CVM were applied and logged by the
trustworthy controller (Steps 5-9). By inspecting the list
of commands, their expected outcomes and the current
mode of the CVM (i.e., ‘in-service’), the users can check
the runtime integrity of the CVM and the service.

Once that trust is extended to the CVM and the
service, the users can start using the service with their
confidential/private assets (Step 10). For example, the
users can share their encryption keys for their assets with
a key service, so that the sharing of those keys are tied
to the CVM’s current state. The key service may run on
another TEE (e.g., another SGX application) [47], or the
controller can be extended to also store the users’ keys.

5. Security Analysis

In this section, we present an analysis of duet accord-
ing to our assumptions and threat model (Section 2.2).

Access to the CVM: The SSH interface in the CVM is
only accessible by the trustworthy controller. During the
launch, the controller generates an ephemeral SSH key
specific to this CVM. The controller runs inside an SGX
enclave, so that the private part of the SSH key is not
visible externally.
Insecure packages: Package managers like ‘apt’ ensure
the integrity of the packages they install and only use
packages that were signed by the repository maintainers
[37]. To install backdoored packages, the attacker would
have to compromise the package repository. Disabling this
check to allow unsigned packages means changing the
CVM’s package manager configuration, which would be
visible in the controller’s logs.
Runtime updates: There are two cases regarding updates.

Case 1: The service in the CVM has not served
any users yet, so that no keys and confidential data are
available at the CVM. Any commands and outputs (e.g.,
to install packages, kernel modules, services to bypass the
controller, to change configuration) will be recorded by the
controller; thus, will be visible to the service users that
can inspect them. Because the logs are only kept by the
controller, the service owner cannot tamper with them.

Case 2: The service has already served some users,

6



Attestation Service Provider
(e.g., MAA)

Trustworthy Controller
(SGX) Confidential VM

1. /quote

2. SGX quote

3. verify SGX quote

4. SGX quote OK
5. /get_cvm_state

6. CVM attestation report, commands and output logs

7. verify CVM attestation report

8. CVM attestation OK

9. verify commands and output logs

10. trust service with confidential/private assets

Service User

Figure 3. Service user workflow to establish trust in confidentiality-offering service via duet.

so that some confidential/private data may be available at
the CVM. As a result, any additional command issued by
the service owner risks leaking confidential/private data
(e.g., dumping the memory of a process and transferring
it out). However, to be able to issue new commands,
the service owner first has to mark the CVM as ‘in-
update’, which triggers the controller to kill any long-
running processes started by the service owner (e.g., as
part of the service), preventing memory dumps, before
any new commands are allowed. Any code in the service
bypassing this restriction (e.g., writing to disk, sending
memory content over network) will be visible to service
users and raise suspicion because the code of the service
and installed packages are assumed to be open-source.

6. Prototype Implementation

We implemented a prototype of duet and tested it
for feasibility. The source code for the controller and
client are publicly available [45]. The controller is about
1K lines of Python code. We containerize the controller
with gramine libOS [25] and deploy it on an SGX ma-
chine on Azure (DC2sv3). Our current implementation
uses Azure to provision CVMs with AMD SEV-SNP
(DC2adsv5) or Intel TDX (DC2edsv5). We use a well-
known Ubuntu image designated for CVMs from Canon-
ical [50] (”canonical:0001-com-ubuntu-confidential-vm-
jammy:22 04-lts-cvm:latest”). We follow Azure’s guid-
ance for attesting the CVM with the HCL firmware and
MAA provided by Microsoft [8]. Unfortunately, the HCL
firmware and MAA code are not publicly available, forc-
ing the service owner and users to also trust Microsoft.
We plan extending our prototype to also provision CVMs
from on-premise servers without this extra trust.

We also implemented a client that interfaces with the
trustworthy controller to perform actions. The client is
about 300 lines of Python code and currently acts as
the service owner to issue some commands for testing.
These commands include obtaining an SGX quote from
the controller and verifying it, starting a CVM with a
default package list to obtain its attestation report [12],
[13], running some commands and getting their output,
changing its mode, obtaining the CVM’s current state

and finally stopping the CVM. All packages installed by
default are visible within the controller’s code.

7. Discussion & Future Work

In this paper, we proposed duet that enables a service
owner to deploy and maintain a confidentiality-offering
service running in a CVM with the use a trustworthy
controller running in a process-based TEE. This approach
allows the service owner to benefit from a full OS for
specific hardware access, ease of use and flexibility for
developing, deploying and maintaining the service. At the
same time, it allows service users to verify the runtime
integrity of the CVM and the service via the runtime
integrity of the controller, because the controller is the
only entity with administrative capabilities on the CVM.

An obvious disadvantage of duet is that it requires two
TEE technologies. Fortunately, both are readily available
and cheap in today’s cloud infrastructure [6], [14]. One
potential bottleneck duet can introduce is that the service
users have to first establish trust in the controller and CVM
via remote attestation before they interact with the service.
We note that the controller can be scaled out easily by
sharing the SSH key with other trustworthy controllers
via the sealing/unsealing primitive in Intel SGX [33].

As mentioned in Section 4.1, duet’s trustworthy con-
troller can handle multiple CVMs to support services with
multiple instances of the same component for scalability.
For example, Citadel [52] uses separate training enclaves
for each dataset owner in a collaborative and confiden-
tial/private ML training system. duet can facilitate these
types of services to migrate to CVMs and benefit from
their advantages (e.g., confidential GPU access, OS-level
sandboxing mechanisms), and orchestrate their workloads.

Similarly, a single duet controller can be used for dif-
ferent confidentiality-offering services and their respective
CVMs: the controller is generic with no dependencies on
the launched service; thus, can be reused. A cloud provider
can also offer duet as a service for service owners, so that
they can extend process-based TEE attestation properties
(i.e., service integrity) to a CVM while allowing runtime
updates on it. We leave these extensions for future work.

7



Acknowledgements

We thank our anonymous reviewers and our shepherd
for their feedback and suggestions to improve this paper.

References

[1] SEV Secure Nested Paging Firmware ABI Specification.
https://www.amd.com/content/dam/amd/en/documents/epyc-
technical-docs/specifications/56860.pdf. Last accessed on
14.05.2024.

[2] AMD SEV-SNP Attestation: Establishing Trust in Guests.
https://www.amd.com/content/dam/amd/en/documents/developer/
lss-snp-attestation.pdf. Last accessed on 05.03.2024.

[3] Pedro Antonino, Ante Derek, and Wojciech Aleksander Wołoszyn.
Flexible remote attestation of pre-snp sev vms using sgx enclaves.
IEEE Access, 11, 2023.

[4] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al.
Privacy-preserving deep learning via additively homomorphic en-
cryption. IEEE transactions on information forensics and security,
13(5):1333–1345, 2017.

[5] Attestation with AMD SEV-SNP - Amazon Elastic Compute
Cloud. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
snp-attestation.html. Last accessed on 06.05.2024.

[6] EC2 On-Demand Instance Pricing - Amazon Web Services.
https://aws.amazon.com/ec2/pricing/on-demand/. Last accessed on
04.03.2024.

[7] Key foundations for protecting your data with Azure confidential
computing. https://azure.microsoft.com/en-us/blog/key-
foundations-for-protecting-your-data-with-azure-confidential-
computing/. Last accessed on 06.03.2024.

[8] confidential-computing-cvm-guest-attestation/cvm-guest-
attestation.md at main - Azure/confidential-computing-cvm-
guest-attestation - Azure Confidential VMs attestation guidance
& FAQ. https://github.com/Azure/confidential-computing-cvm-
guest-attestation/blob/main/cvm-guest-attestation.md. Last
accessed on 04.03.2024.

[9] About Azure confidential VMs — Microsoft Learn.
https://learn.microsoft.com/en-us/azure/confidential-computing/
confidential-vm-overview. Last accessed on 04.03.2024.

[10] Sample Code for Intel SGX Attestation using Microsoft Azure
Attestation. https://github.com/Azure-Samples/microsoft-azure-
attestation/tree/master.

[11] What is guest attestation for confidential VMs? — Mi-
crosoft Learn. https://learn.microsoft.com/en-us/azure/confidential-
computing/guest-attestation-confidential-vms. Last accessed on
04.03.2024.

[12] Use sample application for guest attestation in confidential
VMs — Microsoft Learn. https://learn.microsoft.com/en-us/azure/
confidential-computing/guest-attestation-example?tabs=linux. Last
accessed on 04.03.2024.

[13] GitHub - Azure/confidential-computing-cvm-guest-attestation:
Confidential VM Platform Guest attestation sample apps. https:
//github.com/Azure/confidential-computing-cvm-guest-attestation.
Last accessed on 04.03.2024.

[14] Pricing - Linux Virtual Machines — Microsoft Azure.
https://azure.microsoft.com/en-us/pricing/details/virtual-
machines/linux/#pricing. Last accessed on 04.03.2024.

[15] RBC creates relevant personalized offers while protecting
data privacy with Azure confidential computing. https:
//customers.microsoft.com/en-us/story/1356341973555285762-
royalbankofcanada-banking-capital-markets-azure. Last accessed
on 06.03.2024.

[16] Henk Birkholz, Dave Thaler, Michael Richardson, Ned Smith, and
Wei Pan. Remote ATtestation procedureS (RATS) Architecture -
RFC 9334. https://datatracker.ietf.org/doc/rfc9334/. Last accessed
on 04.03.2024.

[17] A Technical Analysis of Confidential Computing.
https://confidentialcomputing.io/wp-content/uploads/sites/10/
2023/03/CCC-A-Technical-Analysis-of-Confidential-Computing-
v1.3 unlocked.pdf. Last accessed on 06.03.2024.

[18] Confidential Computing: Hardware-Based Trusted Execution
for Applications and Data. https://confidentialcomputing.io/wp-
content/uploads/sites/10/2023/03/CCC outreach whitepaper
updated November 2022.pdf. Last accessed on 06.03.2024.

[19] Confidential Containers Project. https://confidentialcontainers.org/.
Last accessed on 08.03.2024.

[20] Encrypted Virtual Machine Images for Confidential Computing.
https://kvmforum2021.sched.com/event/ke4Y. Last accessed on
14.05.2024.

[21] Anna Galanou, Khushboo Bindlish, Luca Preibsch, Yvonne-Anne
Pignolet, Christof Fetzer, and Rüdiger Kapitza. Trustworthy con-
fidential virtual machines for the masses. In Proceedings of
the 24th International Middleware Conference, Middleware ’23.
Association for Computing Machinery, 2023.

[22] Confidential VM attestation — Google Cloud. https://cloud.google.
com/confidential-computing/confidential-vm/docs/attestation. Last
accessed on 06.05.2024.

[23] google/go-sev-guest offers a library to wrap the /dev/sev-guest
device in Linux, as well as a library for attestation verification
of fundamental components of an attestation report. https://github.
com/google/go-sev-guest. Last accessed on 06.05.2024.

[24] google/go-tdx-guest offers a library to wrap the /dev/tdx-guest
device in Linux, as well as a library for attestation verification
of fundamental components of an attestation quote. https://github.
com/google/go-tdx-guest. Last accessed on 06.05.2024.

[25] GitHub - gramineproject/gramine: A library OS for Linux multi-
process applications, with Intel SGX support. https://github.com/
gramineproject/gramine. Last accessed on 04.03.2024.

[26] Threat Model for gramine project - gramineproject/gramine -
Discussion #1465. https://github.com/gramineproject/gramine/
discussions/1465. Last accessed on 04.03.2024.

[27] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and
Emmett Witchel. Chiron: Privacy-preserving machine learning as
a service. arXiv preprint arXiv:1803.05961, 2018.

[28] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett
Witchel. Ryoan: A distributed sandbox for untrusted computation
on secret data. ACM Transactions on Computer Systems (TOCS),
35(4):1–32, 2018.

[29] What is confidential computing? — IBM. https://www.ibm.com/
topics/confidential-computing. Last accessed on 06.03.2024.

[30] Intel SGX: Intel EPID Provisioning and Attestation Services.
https://www.intel.com/content/www/us/en/content-details/671370/
intel-sgx-intel-epid-provisioning-and-attestation-services.html.
Last accessed on 04.03.2024.

[31] Code Sample: Intel Software Guard Extensions Remote Attestation
End-to-End Example. https://www.intel.com/content/www/us/
en/developer/articles/code-sample/software-guard-extensions-
remote-attestation-end-to-end-example.html. Last accessed on
04.03.2024.

[32] Attestation Services for Intel Software Guard Extensions.
https://www.intel.com/content/www/us/en/developer/tools/
software-guard-extensions/attestation-services.html. Last accessed
on 04.03.2024.

[33] Innovative Technology for CPU Based Attestation and Sealing.
https://www.intel.com/content/dam/develop/external/us/en/
documents/hasp-2013-innovative-technology-for-attestation-
and-sealing-413939.pdf. Last accessed on 06.03.2024.

[34] Affected Processors: Transient Execution Attacks & Related Secu-
rity... https://www.intel.com/content/www/us/en/developer/topic-
technology/software-security-guidance/processors-affected-
consolidated-product-cpu-model.html. Last accessed on
04.03.2024.

[35] James Bottomley. Deploying Encrypted Images for Confiden-
tial Computing. https://blog.hansenpartnership.com/deploying-
encrypted-images-for-confidential-computing/. Last accessed on
14.05.2024.

8



[36] Weijie Liu, Wenhao Wang, Hongbo Chen, XiaoFeng Wang,
Yaosong Lu, Kai Chen, Xinyu Wang, Qintao Shen, Yi Chen,
and Haixu Tang. Practical and efficient in-enclave verification of
privacy compliance. In 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages
413–425. IEEE, 2021.

[37] apt-secure(8): Archive authentication support for APT. https:
//manpages.org/apt-secure/8. Last accessed on 06.05.2024.

[38] Securing Linux VM boot with AMD SEV measurement.
https://static.sched.com/hosted files/kvmforum2021/ed/securing-
linux-vm-boot-with-amd-sev-measurement.pdf. Last accessed on
08.03.2024.

[39] Azure confidential computing with NVIDIA GPUs for trustwor-
thy AI. https://azure.microsoft.com/en-us/blog/azure-confidential-
computing-with-nvidia-gpus-for-trustworthy-ai/. Last accessed on
06.05.2024.

[40] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin,
Diego Perino, and Nicolas Kourtellis. Ppfl: privacy-preserving
federated learning with trusted execution environments. In Pro-
ceedings of the 19th annual international conference on mobile
systems, applications, and services, pages 94–108, 2021.

[41] Vikram Narayanan, Claudio Carvalho, Angelo Ruocco, Gheorghe
Almasi, James Bottomley, Mengmei Ye, Tobin Feldman-Fitzthum,
Daniele Buono, Hubertus Franke, and Anton Burtsev. Remote
attestation of confidential vms using ephemeral vtpms. In Pro-
ceedings of the 39th Annual Computer Security Applications Con-
ference, ACSAC ’23. Association for Computing Machinery, 2023.

[42] Confidential Computing on NVIDIA H100 GPUs for
Secure and Trustworthy AI — NVIDIA Technical Blog.
https://developer.nvidia.com/blog/confidential-computing-on-
h100-gpus-for-secure-and-trustworthy-ai/. Last accessed on
04.03.2024.

[43] Confidential Compute on NVIDIA Hopper H100.
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-
center/HCC-Whitepaper-v1.0.pdf. Last accessed on 04.03.2024.

[44] Discussion: Potential vulnerability for PKU feature #1351.
https://github.com/occlum/occlum/issues/1351. Last accessed on
05.03.2024.

[45] Nokia-Bell-Labs/tee-duet. https://github.com/Nokia-Bell-Labs/tee-
duet. Last accessed on 14.05.2024.

[46] Ronald Perez, Reiner Sailer, Leendert van Doorn, et al. vtpm:
virtualizing the trusted platform module. In Proc. 15th Conf. on
USENIX Security Symposium, 2006.

[47] SCONE Configuration and Attestation Service. https://sconedocs.
github.io/CASOverview/. Last accessed on 06.05.2024.

[48] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang,
Yi Xu, Yubin Xia, and Shoumeng Yan. Occlum: Secure and
efficient multitasking inside a single enclave of intel sgx. In
Proceedings of the Twenty-Fifth International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems, pages 955–970, 2020.

[49] Chia-Che Tsai, Donald E Porter, and Mona Vij. {Graphene-SGX}:
A practical library {OS} for unmodified applications on {SGX}.
In 2017 USENIX Annual Technical Conference (USENIX ATC 17),
pages 645–658, 2017.

[50] Confidential Computing — Ubuntu. https://ubuntu.com/
confidential-computing. Last accessed on 06.03.2024.

[51] GitHub - virtee/snpguest: A CLI tool for interacting with SEV-
SNP guest environment. https://github.com/virtee/snpguest. Last
accessed on 04.03.2024.

[52] Chengliang Zhang, Junzhe Xia, Baichen Yang, Huancheng Puyang,
Wei Wang, Ruichuan Chen, Istemi Ekin Akkus, Paarijaat Aditya,
and Feng Yan. Citadel: Protecting data privacy and model confi-
dentiality for collaborative learning. In Proceedings of the ACM
Symposium on Cloud Computing, pages 546–561, 2021.

9


