
PraaS: Verifiable Proofs of Property as-a-Service with Intel SGX

Istemi Ekin Akkus
Nokia Bell Labs

Ivica Rimac
Nokia Bell Labs

Ruichuan Chen
Nokia Bell Labs

Abstract—Industry 4.0 presents an immense opportunity
to create novel automation solutions. These solutions will
be largely augmented using analytics based on Machine
Learning (ML), requiring diverse and often large datasets.
Obtaining such datasets is not always possible for individual
entities. Although data marketplaces can facilitate collabo-
rations, the lack of trust relations among these entities can
pose a significant barrier on the extent of these interactions.

In this paper, we advocate that Trusted Execution En-
vironments (TEEs), such as Intel SGX, can provide an
effective solution to this problem. We present PraaS (Proof-
as-a-Service), a system enabling dataset owners to obtain
verifiable proofs that their datasets satisfy certain properties,
without exposing their confidential datasets. These proofs
can be checked by third parties to obtain assurances about
the datasets they plan to use in their applications before
actual usage. PraaS achieves these properties with readily
available TEEs that incur low monetary cost, and can
support large static and streaming datasets. For example,
PraaS can produce a uniform sample from a static dataset
of 5M hashes in 267 seconds, and compute statistics for
streaming batches of integers with a rate of 200K/sec in
less than 820 ms, along with their verifiable proofs. PraaS
also allows easy and on-demand customizability for various
property computations in C/C++ and Python with enclave
templates and automated configuration.

1. Introduction

In Industry 4.0, many organizations will augment their
automation solutions using with ML analytics. These an-
alytics approaches will require diverse and large-scale
datasets [2], [22], [23], [40], which may not always be
possible for individual organizations to possess, requiring
them to collaborate with others. Data marketplaces can
facilitate such collaborations [5], [11], [12], [15], [32],
[38]; however, the lack of trust relations among these
entities can pose a significant barrier on the scale and
extent of their data exchanges.

This trust requirement can be seen from three per-
spectives. First, the datasets typically contain confidential
information that is important for the sharing entities (i.e.,
dataset owners). The risks of sharing such datasets may
be too large in terms of operational security, financial
information and logistics. Second, the entities utilizing the
shared datasets (i.e., dataset users) most likely base their
ML analytics solutions on these datasets, which in turn
power their automation solutions for critical infrastructure.
As a result, the quality, validity, integrity and properties
of such datasets play an important role for their use of
these datasets. Finally, the content of the datasets plays

an increasing role from a privacy perspective, especially
in the cases where the datasets contain individuals’ data.
This increasing importance is already reflected in laws
and regulations, such as GDPR in Europe [14], HIPAA
and CCPA in the US [10], [20]. These regulations will
certainly reflect on the owners and users of such private
data in terms of compliance, either as an enforced require-
ment (e.g., by regulatory bodies) or self-imposed public
relations act (e.g., to be seen as ‘good’ by general public).

Besides the trust requirements, any solution to this
problem should also consider utility. One cannot always
determine a dataset’s utility before it is shared and used,
because it often depends on the user’s application and/or
the type of the dataset. As a result, customizability and on-
demand computation of properties become requirements,
imposing additional constraints on the solution. Coupled
with a dataset’s type (i.e., static or streaming), its size
and the rate of new data, these constraints force one to
consider practical issues, such as cost, scalability with size
and latency of proof generation. These considerations lead
to trade-offs between these issues and trust assumptions,
prompting the question: What is the minimum cost and
trust to obtain the maximum performance?

We advocate that Trusted Execution Environments
(TEEs) [3], [29] can provide an effective solution to
this problem: TEEs are readily available on major cloud
providers, and cost as low as 0.09 Euro/hour [6], [8].
They are performant enough to handle large datasets and
streaming data (Section 7). Finally, they offer ‘acceptable
trust’, where the root of trust is the TEE hardware instead
of the cloud provider. As a result, TEEs can simultane-
ously address the trust requirements among various enti-
ties: confidentiality/privacy constraints of dataset owners
and utility/customizability demands of dataset users.

In this paper, we present PraaS (Proof-as-a-Service),
a system that enables dataset owners to obtain verifiable
proofs for properties of their confidential datasets. To use
TEEs in this fashion, we propose a generic extension to
TEE computations: When the TEE initializes, it gener-
ates an ephemeral public/private keypair and embeds the
public key in the attestation quote. When the property
computation is finished, the TEE signs the output with its
ephemeral private key. The attestation quote with the pub-
lic key and the signed TEE output comprise the verifiable
proof : a third party can check the validity of the quote,
and then the signature on the output using the public key
in the quote to ensure the output was indeed produced
faithfully in the TEE.

In the next section, we present motivational use cases,
followed by background and related work on how to
achieve verifiable proofs for property computations (Sec-
tion 3). We list our assumptions and goals in Section 4. We



then describe the design, implementation and evaluation
of PraaS (Sections 5, 6 and 7). We conclude with a
discussion of our approach’s implications and future work
in Section 8. The code of PraaS is publicly available [36].

2. Motivational Scenarios

Federated Learning offers a potential solution for the
privacy requirement: The model is sent to dataset owners,
who compute their updates over their private data, and
send the updates back to the model owner [1], [33], [34],
[42]. TEEs can also enable collaborative learning with
dataset privacy. Ohrimenko et al. [35] propose that dataset
owners agree on a model and training code, deploy them in
an SGX enclave in the cloud, attest to it and upload their
datasets. Citadel [43] and Chiron [21] use TEEs to not
only preserve dataset privacy but also the confidentiality
of the model coming from a different collaborator. Here,
local and global model updates are applied with verifiable
and trusted code that does not expose private data.

In these cases, participants never expose their datasets
to other participants, preserving the confidentiality and
privacy. However, this approach creates a potential fair-
ness problem: Malicious participants may not contribute
useful data to the training; yet they can still benefit from
the trained model. Such participants cannot be easily
detected because the usefulness of the dataset requires
one to see and compute over the data, which conflicts with
the confidentiality/privacy requirement. Similarly, before a
dataset user obtains a dataset, the user may want to know
whether it will satisfy the requirements of a specific use
case. Consequently, dataset owners need to convince po-
tential collaborators that their datasets can provide value,
which may not be easy: besides the confidentiality/privacy
requirement, giving the dataset away would also contradict
with the goal of monetizing it. In addition, the data may
not be fully available yet (e.g., streaming data).

3. Background & Related Work

3.1. Background: SGX Remote Attestation

One popular commercially available TEE solution is
Intel’s Secure Guard Extensions (SGX). SGX allows user-
and OS-level code to define private memory regions (i.e.,
enclaves), whose contents are protected for confidentiality
and integrity. With remote attestation [27], users obtain an
attestation quote, ensuring them that they are interacting
with a genuine SGX enclave on an up-to-date system with
the latest trusted computing base (TCB). In the quote, of
particular interest are the cryptographic measurement and
report data fields (i.e., MRENCLAVE, REPORTDATA).
MRENCLAVE value refers to the code and configuration
running inside the enclave. REPORTDATA value refers to
the enclave data at the initialization and can be used for
creating a secure channel with the enclave.

There are two remote attestation flavours: Enhanced
Privacy ID (EPID) based attestation requires the plat-
form and TEE user contact the online attestation service
operated by Intel [25]. It is deprecated due to Intel’s
focus on cloud [27], [28], [30]. Elliptic Curve Digital
Signature Algorithm (ECDSA) based attestation is en-
abled via the Intel SGX Data Center Attestation Primitives

(DCAP), and allows cloud operators to build their own
attestation services. This approach is available on Xeon
processors that also provide larger Enclave Page Caches
[27]. Cloud applications benefit from ECDSA-based at-
testation, because the interactions between Intel and the
attestation service are transparent to the applications.

3.2. Related Work

Zero-Knowledge Proofs (ZKPs) [17] can be used to
prove the integrity and correctness of a property com-
putation without revealing private data. However, despite
recent advances to improve their performance [19] and
usability [9], the performance of ZKPs with large data
and arbitrary computations remains low, making them
unsuitable for scalability and customizability.

NIZK [41] proposes creating non-interactive ZKPs
within a TEE. They incorporate the Lua interpreter in
an enclave, such that users supply a script with public
and private input. The computation happens inside the
TEE and the result is embedded in the attestation quote.
Although their usage of attestation quotes as proof is
similar, there are several crucial differences that make
NIZK unsuitable for our purposes. First, NIZK sets the
REPORTDATA field in the attestation quote after the
computation. In a streaming scenario, this approach would
require one attestation per batch, making it unsuitable for
continous computations for streaming data. In contrast,
PraaS requires one attestation per stream (Section 7).
Second, it is unclear how a private dataset can be shared
with the TEE before the attestation; the script’s private
input is in the context of the ZKP (i.e., not exposed as
part of the result in the attestation quote).

Genés-Durán et al. [16] define a data exchange proto-
col with a free sample (DEFS) and integrate it into a data
marketplace [15]. The main goal is to provide a dataset
sample to potential buyers in a decentralized data ex-
change. As such, it only works for static datasets, because
the sampling protocol requires encrypted dataset items to
be uploaded beforehand (i.e., no streaming). Additionally,
it only considers sampling and not the generation of
verifiable proofs for custom property computations.

4. Assumptions & Goals

In this section, we first present the actors in PraaS.
We then present our assumptions about them and the threat
model we consider, followed by our goals.

4.1. Actors

Dataset owner: A dataset owner wants to prove that the
dataset satisfies certain properties and thus, is of value to
dataset users. For example, the dataset owner may want to
monetize a dataset by making it available on a marketplace
[5], [11], [12], [38]. Similarly, the owner may want to
convince potential partners and collaborators that a dataset
will be beneficial for them [4], [43].
Dataset user: A dataset user may want to obtain a dataset
and use it for an application scenario and ML analytics
solution. The dataset can be bought on a marketplace, but
before purchasing, the dataset user would like to obtain
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confidence about the properties of the dataset and its
potential utility. Similarly, a participant in a collaboration
may want more confidence that others are contributing
fairly and are not trying to free-ride from others’ datasets.
PraaS provider: The PraaS provider operates the nec-
essary infrastructure to produce proofs of property for
dataset users. We envision PraaS to be run in a cloud
setting, so that this entity could be an actual infrastructure
provider that is offering PraaS on TEEs, or a separate
entity that is provisioning TEE resources from an infras-
tructure provider and operating PraaS.

4.2. Threat Model & Assumptions

We assume that the PraaS and the infrastructure
provider do not collude with the dataset owner and dataset
user. Neither dataset owners nor dataset users need to trust
the infrastructure provider, except for the assumptions
that standard security practices are in-place (e.g., physical
security of infrastructure) and the TEE infrastructure is
kept up-to-date (e.g, TEE firmware updates are performed
regularly). We think that these assumptions are reasonable
in today’s world, where many companies trust the cloud
infrastructure providers even without TEEs.

There are several ways to share the proofs of property
of a dataset with potential users (e.g., private communica-
tions, announcements, marketplace). These methods may
also include the dataset owner demonstrating ownership of
a dataset and the proofs of property computed over it (e.g.,
by signing any created proofs with the owner’s private
key). For brevity, we do not describe these protocols, and
leave any issues regarding them outside our scope.

Many TEE manufacturers, including Intel, take a
meticulous approach regarding vulnerabilities and their
patches [31]. Nonetheless, we consider attacks on the
underlying TEE hardware outside our scope.

4.3. Goals

Ideally, a dataset owner would produce verifiable
proofs of the properties of the dataset, and send the proofs
to potential users, who would then verify them.
Customizability: Some properties may be generic and can
apply to many use cases. For example, checking the for-
matting requirements of a dataset or ensuring that the data
values are feasible may be common among many applica-
tions. Similarly, informational properties of a dataset may
be useful for many applications (e.g., percentiles, standard
deviation). However, many properties may not easily be
forecast or enumerated, because a dataset’s utility often
depends on the use case and the properties of the dataset.
Practicality: Many datasets are large, requiring consider-
ations about performance, cost and trust. Processing large
datasets in a timely manner will certainly affect their use-
fulness. Furthermore, some datasets may be continuously
generated (i.e., streaming data), requiring a performant
solution to handle them. Similarly, the cost plays a role,
because generating a proof for a dataset should be less
expensive than the monetization goal. These practical
aspects lead one to make trade-offs that may also include
the trust assumptions while producing such proofs.

With these aspects in mind, our goal is to design a
practical and general system that supports dataset owners’

Algorithm 1 Enclave initialization, ephemeral keypair
generation and output signing

1: procedure INITENCLAVE()
2: keypair← generateRSAKeypair()
3: report← getSGXAttestationReport()
4: report.REPORTDATA← hash(keypair.publicKey)
5: return report, keypair.publicKey
6: procedure DOCOMPUTE(ENCRYPTEDDATA)
7: data← decryptWithPrivateKey(encryptedData)
8: output← computeProperty(data)
9: signature← signWithPrivateKey(output)

10: return output, signature
11: procedure HANDLEREQUEST()
12: report, enclavePublicKey← InitEnclave()
13: quote← getSGXQuote(report)
14: sendToUser(quote, enclavePublicKey)
15: encryptedData← receiveFromUser()
16: output, signature← DoCompute(encryptedData)
17: sendToUser(output, signature)

and users’ needs, regarding properties, dataset sizes and
dataset types. The system should be performant enough
to support large-scale static and streaming datasets, incur
low cost and have acceptable trust assumptions.

5. Design

In this section, we first introduce the technical building
block to extend the trust in a TEE to third parties that were
not involved with the TEE creation and computation. We
then present property computation functions (PCFs) that
extract the desired property from a confidential dataset.
We also describe a dataset owner’s workflow to generate
a proof of property for a confidential dataset, and how
potential dataset users can verify that proof. We instantiate
PraaS with Intel SGX because of its availability.

5.1. Enclave-signed Output

One challenge of using SGX enclaves for generating
proofs of properties that are verifiable by third parties (i.e.,
dataset users) is due to the fact that their original goal was
to give guarantees and confidence to the user that launched
the enclave but not others: after establishing a session
with it, a user would be confident that the computation
result was obtained inside that enclave. Convincing other
users, however, requires more: even if the user supplies
the attestation quote to the others, there is still an incentive
not to be honest when sharing the computation result
(e.g., claiming a dataset satisfy a property to monetize
it). This problem exists because the attestation quote and
the enclave computation result are not linked together.

To address this shortcoming, we propose a simple and
generic extension that can be applied to any enclave com-
putation. Here, the enclave code produces an ephemeral
public/private keypair during initialization, and embeds
the secure hash of the public key in the attestation quote
(i.e., REPORTDATA field). When the enclave finishes its
computation, its signs the result with the ephemeral private
key of the enclave. Consequently, a third-party user can
link the quote and the computation result, by verifying the
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quote, extracting the public key and checking the signature
on the output.
Linking Quote and Enclave Output. Algorithm 1 shows
the pseudocode of our extension. When the PraaS server
receives a user request, it creates an enclave and requests
the enclave’s attestation report (Line 12 in Algorithm 1).
In the procedure for enclave initialization, an ephemeral
public/private keypair is generated first (Line 2), and
then the attestation report is extracted via an SGX SDK
call (Line 3). Before returning the report, the procedure
stores the secure hash of the ephemeral public key to the
REPORTDATA field of the attestation report. Note that
lines 2-4 happen inside the enclave; thus, the private key
is only accessible inside the enclave.

Subsequently, the platform attests to the report and
signs it (Line 13) [24]. The server then sends the attes-
tation quote (i.e., signed report) and the enclave’s public
key to the requesting user (Line 14). Any party with the
quote can then extract from the attestation quote the hash
of the ephemeral public key of the enclave and compare
it with the hash of the received public key.

The user then performs the regular remote attestation
checks [27] about the validity of the quote with the At-
testation Service (e.g., Intel, Microsot Azure Attestation).
If the quote is valid, the user encrypts the confidential
data and supplies it to the enclave (Line 15), triggering
the enclave to first decrypt the encrypted data (Line 7)
and then to compute the property of the data (Line 8).
Afterwards, the enclave signs the computation result with
its ephemeral private key to produce a signed enclave
output (Line 9). The server then returns the signed output
to the user (Line 17).
Third-party Verifiable Proof. The user now has two
pieces: the remote attestation quote obtained at the ini-
tialization of the enclave and the signed enclave output.
Recall that the remote attestation quote includes informa-
tion about the enclave’s ephemeral public key. These two
pieces constitute the verifiable proof that the computation
result was produced inside a secure enclave: A third party
user can first verify the attestation quote that states the
integrity and correctness of the TEE hardware, and then
use the embedded public key to verify the signature on
the enclave output.

The enclave output contains the secure hash of the
input to the enclave as well as the computation result.
Note that the input and computation result can be complex
with use of high-level data structures (e.g., JSON-encoded
strings correctly interpreted in the enclave code).

This approach has two advantages: First, the proof
verification can be performed even after the enclave is
terminated, not requiring any coordination among the TEE
user and the third party (e.g., dataset owner and user).
Second, the attestation is decoupled from the computation,
so that arbitrarily complex and long computations (e.g.,
computations with large datasets) as well as computations
with periodical output (e.g., computations of streaming
data) can be supported (Section 7), unlike producing the
report after the computation [41].

5.2. Property Computation Functions

A property computation function (PCF) is the logic
to extract a desired property from a dataset. Examples

of such desired properties can include checks about for-
matting, compatibility to a schema as well as internal
consistency and feasibility checks. For example, the ‘age
in years’ column in a health dataset could be an integer
and should be a positive value less than 100. Similarly,
the ‘BMI’ values should correspond to the ‘height in
cm’ and ‘weight in kg’ values. PCFs can also include
computation of statistical properties of a column (e.g.,
percentiles, mean) as well as arbitrarily complex and
customized application logic that can gauge the utility of
the dataset for a specific use case.

We envision that these functions can comprise a cata-
logue, from which a dataset owner or a potential dataset
user can pick. The owner can also create a custom PCF
if the property will show the dataset’s value to potential
users. Similarly, the dataset owner may also accept custom
PCFs from potential users, so that they can better deter-
mine whether the dataset will benefit their applications.
Accepted custom PCFs could then become part of the
catalogue for future use.
PCF Correctness. The PCF developer may not neces-
sarily be the same entity as the dataset owner or the
dataset user. However, the PCF code is available to both
the dataset owner and potential dataset users, so that
they can check its correctness and its intentions. For
dataset owners, this property is important because they
need to check whether the PCF is trying to blatantly
leak confidential data. For example, a malicious PCF may
try copying private data to the output, an attacker may
combine multiple PCF outputs to leak private data, or
establish covert channels. When the dataset owner cannot
confidently determine such attempts, the owner has the
prerogative to decline any PCFs in order not to risk such
attacks, use differential privacy techniques [13], or allow
only a certain number of PCFs on a given dataset. The
inspection of such PCFs can also be performed by auditors
or trusted third parties on behalf of the dataset owners.

On the other hand, dataset users need to check whether
the PCF is indeed computing the property of the dataset
they are interested in. Otherwise, a malicious dataset
owner may try to supply a dataset that, on the best case,
would be useless for the user, and on the worst case, can
create vulnerabilities and attacks on the user’s application
(e.g., poisoning the ML model). Note that a potential
dataset user also has the right not to accept a proof with
a given dataset, if the PCF result indicates that the data
is not going to be beneficial for the user’s application.
Enclave Templates. Writing a custom PCF from scratch
could be difficult, considering that most of the application
enclaves are written in low-level languages like C/C++ [7],
[26]. To facilitate the easy creation of a PCF, we provide
a template that covers the general steps of an enclave,
including the generation of an ephemeral public/private
keypair, retrieval of an attestation quote with the public
key, decryption of encrypted private data and signing of
the computation result. The user only supplies a single
C/C++ class with a pre-defined function that is called
from the template code during execution. The server then
compiles the template and the user-supplied code into an
enclave binary. Note that the user can check that this
binary is correct by compiling it locally and comparing
it with the measurement value in the attestation quote.

To support PCFs written in high-level languages such
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Figure 1. High-level PraaS workflow.

as Python, we allow users to upload a script for the prop-
erty computation and use a libOS [37], [39]. Inside PraaS,
the general steps are packaged into an enclave using the
libOS and then instantiated, while the user-supplied script
becomes part of the enclave input besides the private
dataset. Here, the attestation quote only reflects the generic
enclave code; however, the enclave output can also include
the secure hash of the input script. The generic enclave
code performing this action is also available to the dataset
owners and potential dataset users, who can check its
correctness. Both templates, build scripts for PCF enclaves
and PraaS server code are publicly available [36].
PCF Integrity. In C/C++ enclaves, the supplied template
and the PCF code are compiled into the enclave binary,
with which the enclave is launched. As a result, the
measurement (i.e., MRENCLAVE) in the attestation quote
covers the PCF code. Because the PCF code, the enclave
template and the build scripts are available to dataset
owners and dataset users, they can reproduce this value
by compiling the enclave binary themselves.

In Python enclaves, we utilize a libOS [37], [39],
and the MRENCLAVE value only reflects the template
code. However, the enclave template computes the hash
of the PCF code and includes it in its signed output.
The dataset owners and dataset users have access to the
template and PCF code, so that they can reproduce both
the MRENCLAVE value of the template and the PCF code’s
hash. After loading the PCF code but before executing it
over the confidential dataset, the dataset owner can retrieve
these hash values from the template code executing in the
enclave. Alternatively, the template code can check the
PCF’s expected hash value supplied by the dataset owner
and stop in case of a mismatch.

As an alternative to the above approach, one could also
include the PCF code while creating the build artifact (e.g.,
a container), so that it is covered by the MRCENCLAVE
value. One disadvantage of this approach is that the build
artifact and the measurement value would be specialized
for each individual PCF. Considering that the libOS causes
to increase the trusted computing base, we opted on fixing
the enclave template code with the libOS, so that its code

can be inspected, measured and reused for different PCFs.
A minor disadvantage is that the integrity of the PCF
supplied as an input needs to be computed separately and
compared with the value in the enclave-signed output.

5.3. Proof Generation

Figure 1 depicts the high-level workflow of PraaS
using Intel SGX, in which a dataset owner produces a
proof of property using PraaS and sends it to potential
users. Here, the untrusted service code facilitates the ini-
tialization and termination of the TEE as well as proxying
any (encrypted) messages between the user’s client soft-
ware and the TEE. The trusted property code runs inside
the TEE and performs the general operations described in
Section 5.2 as well as the property computation.

The dataset owner first requests a TEE enclave, either
with a PCF from the catalogue or by uploading a custom
PCF (Step 1 in Figure 1). The untrusted service code
initializes the requested enclave (Step 1A). During its
initialization, the enclave generates an ephemeral pub-
lic/private keypair as well as a cryptographic report of
its status that includes the hardware status (i.e., genuine
SGX on an up-to-date system with latest TCB) and the
secure hash of the enclave code (i.e., hash of the enclave
binary compiled from the enclave template and the PCF).
Any user can match this value with a locally calculated
value to ensure that it is what they expected. The secure
hash of the enclave’s ephemeral public key is included
in the attestation quote’s REPORTDATA field [24] (Step
1B), allowing any user to link the attestation quote to the
enclave’s computation result via the enclave’s signature.
Recall that these steps are in the enclave template, allow-
ing users to check their correctness. The attestation quote
and the enclave’s ephemeral public key are then returned
to the client via the service code (Step 1C).

After receiving the attestation quote and the enclave’s
public key (Step 2), the client checks the quote’s validity
via the Attestation Service (Step 3), either with Intel for
EPID-based attestation [25] or a provider (e.g., Microsoft
Azure Attestation) for ECDSA-based attestation. If the
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attestation succeeds (i.e., genuine and up-to-date enclave
with correct code), the session continues.

The dataset owner then encrypts the private dataset
with an ephemeral session key, and the session key with
the enclave’s public key. The owner sends the encrypted
datasetand key to the enclave, and triggers the PCF (Step
4). The untrusted service passes the encrypted dataset
to the TEE (Step 4A). The enclave code decrypts the
symmetric key with its private key and decrypts the private
dataset with the symmetric key (Step 4B). The enclave
code then computes the property from the dataset and
produces the computation result. The result can contain
additional metadata about the dataset if needed (Step 4C).
When finished, the enclave produces the signed enclave
output (Step 5A) and sends it to the dataset owner via the
service code (Step 5B & 6). It contains:

(i) the hash of the (decrypted) input dataset (HID),
(ii) the property computation result (PCR),
(iii) the hash of the PCR (HPCR),
(iv) the hash of the PCF (HPCF ) (for Python) and
(v) a signature (Sig) over the above fields with the

enclave’s ephemeral private key generated at initialization.

5.4. Proof Verification

With the public key obtained in Step 2, the dataset
owner then checks the signature by computing the secure
hashes of the dataset (i.e., to match HID) and the compu-
tation result (i.e., to match HPCR) (Step 7). Checking
HID ensures that the untrusted service code did not
tamper with the encrypted data exchange.

Afterwards, the dataset owner announces or sends to
potential dataset users the availability of the verifiable
proof of property about the dataset (e.g., data marketplace)
(Step 8). The proof consists of the attestation quote with
the enclave’s ephemeral public key received in Step 2 and
the signed enclave output received in Step 6.

A potential dataset user then verifies the proof of prop-
erty: The user first checks the validity of the attestation
quote with the Attestation Service (Step 9). Then the
signature on the enclave output is checked with the public
key from the attestation quote (Step 10). The successful
checks indicate that the property of the dataset claimed
by the owner was correctly computed in a TEE. Finally,
the user determines if the property of the dataset satisfies
the user’s requirements. If so, the user contacts the owner
to obtain the dataset (e.g., via the data marketplace).

6. Implementation

Table 1 shows our implementation details with In-
tel SGX. Our first implementation, based on Microsoft
Azure’s sample code [7], supports property computation
functions (PCFs) written in C/C++. It consists of a server,
the enclave template, and a catalogue of PCFs. The en-
clave template defines the external calls as well as the
common functions about enclave initialization, attestation
quote generation and output signing.

The PCFs in our catalogue were compiled into bi-
naries with the enclave template (Table 2). Sampling
produces a uniform sample from the dataset. Non-
repetition+sampling first ensures that no items were re-
peated before sampling. Statistics computes statistical

TABLE 1. PRAAS IMPLEMENTATION DETAILS IN LINES OF CODE.
THE PYTHON ENCLAVES ARE CREATED WITH GRAMINE LIBOS.

Enclaves Untrusted Enclave Client Example
in Service Template (Python) PCFs

C/C++ 860 1080 (+jsonlib) 489 100-225

Python 583 N/A 369 45

TABLE 2. EXAMPLE C/C++ ENCLAVES.

Example Supported Enclave # of
Enclave Data Type Size pages

Sampling string[] 5.5MB H: 256K, S: 8K
Non-rep.+sampling string[] 5.5MB H: 256K, S: 8K
Statistics int[] 6.1MB H: 1K, S: 1K
Sampling+statistics int[] 6.1MB H: 1K, S: 1K

properties (e.g., mean, percentiles) of the items. Sam-
pling+statistics first obtains a sample and then computes
the statistics on the sampled items. Each example is
written in less than 225 lines of C/C++ code, making the
expansion of the catalogue easy. The Python client can
trigger an enclave, with a PCF from the catalogue or with
a custom PCF, perform attestation with the Attestation
Service (i.e., Microsoft Azure Attestation) and communi-
cate with the enclave as a static or streaming data source.

Our second implementation is in Python and supports
PCFs in Python. The server accepts a script and its de-
pendencies from the client, and launches it inside an SGX
enclave with gramine libOS [18], [39]. After attestation,
the client sends the private data. We created a Python PCF
with 45 lines of code that counts the data items in training
datasets (i.e., cifar10, mnist, fashionmnist, spamnet).

7. Evaluation

In this section, we evaluate the feasibility of PraaSfor
use with static and streaming datasets with two exam-
ple PCFs. We performed all measurements on an SGX-
capable VM on Azure (Standard DC2sv3: 2vCPUs, 16GB
RAM) using Microsoft Azure Attestation. The server and
client were on the same VM to facilitate easier commu-
nication and reduce any network issues.

For static datasets, we use the sampling PCF for
strings as a representative example. Sampling with strings
and its proof can be a powerful primitive, even if the
dataset contains other types of data (e.g., images, video):
The dataset owner first creates a list of hashes belonging
to the data items. These hashes are used to obtain a sample
and proof. Afterwards, the dataset owner prepares the
actual sample with those data items, whose hashes are in
the proof. A dataset user then checks whether the hashes
in the proof match the hashes of the sampled items. For
our experiments, we create static datasets with up to 5M
hashes (with base16-encoded SHA256).

For streaming data, we imagine there is a broker
distributing data coming in batches to subscribers. The
broker and subscribers are interested in reducing band-
width usage, such that the broker filters some batches and

6



TABLE 3. CLIENT-SIDE MEAN (STDEV) LATENCIES FOR ENCLAVE
INITIALIZATION WITH A PCF (AT LEAST 20 RUNS).

setup enclave (ms) verify quote (ms)

Sampling 1794.5 (49.8) 175.2 (6.4)
Non-rep.+sampling 1844.0 (30.3) 174.5 (3.4)
Statistics 424.3 (125.8) 183.4 (7.0)
Sampling+statistics 442.9 (140.6) 184.0 (29.4)

TABLE 4. CLIENT-SIDE MEAN LATENCIES FOR HASH DATASETS
WITH ‘SAMPLING’ ENCLAVE (AT LEAST 20 RUNS).

1M 2M 3M 4M 5M

encrypt data (s) 6.2 12.4 18.7 24.9 31.2
send wait result (s) 47.1 94.0 141.3 188.3 235.5
verify signature (s) 0.07 0.14 0.2 0.27 0.35

Total (s) 53.4 106.7 160.3 213.6 267.1

does not send them if certain properties are not satisfied.
However, the subscribers would like to ensure that the
broker is filtering correctly. The broker uses PraaS to
compute the property in question and to produce a proof.
Accordingly, it only sends the proof but not the actual
batch of data. We vary the batch rate up to 200K/sec.

7.1. Proof Generation & Verification Latency

We show PraaS’s latencies for generating and verify-
ing a proof of property, measured by the client to better
reflect a dataset owner’s perspective. We also report on
the client’s verification of the quote and the signature. In
addition, we break down the latency of the general steps in
the enclave: initialization and quote generation, decryption
of private data, PCF computation and signing the output.
Enclave setup. Table 3 shows the latencies of operations
related to the initialization of a PCF in an enclave. At
the server, setting up an enclave involves the initialization
of the enclave and obtaining an attestation quote with an
ephemeral public key from it. The initialization depends
on the enclave type due to its memory configuration (i.e.,
stack and heap) as well as its PCF code, and causes
most of the latency. In contrast, obtaining the attestation
quote takes about 60 ms for all types. Similarly, the quote
verification is about the same across different enclaves
(and also dataset sizes), which is expected.
Static datasets. Table 4 shows the client latencies for
creating a sample with its proof. Here, the dominating
factor is the communication of the encrypted data and
waiting for the PCF result. When investigated at the
server-side, we find that the property computation takes
a much smaller time compared with the reception and
decryption of private data. For example, for 5M hashes,
the property computation and signing on average take
about 140 ms and 90 ms, respectively.
Streaming data. Table 5 shows the client-side latency
values for handling a batch that includes data encryption,
transmission, proof generation and signature check for
that current batch. PraaS can handle up to 200K/sec
under 820 ms. Note that the enclave is reused for multiple
batches, so the quote verification happens only once.

TABLE 5. CLIENT-SIDE MEAN LATENCIES FOR STREAMING DATA
WITH ‘STATISTICS’ ENCLAVE (100 BATCHES, AT LEAST 20 RUNS).

Rate per sec 10K 20K 50K 100K 150K 200K

Mean (ms) 82.6 115.33 211.4 411.3 619.8 812.9
Stdev (ms) 3.27 3.06 1.99 4.08 5.31 7.44

7.2. Proof Size

Recall that the proof consists of the attestation quote
with the enclave’s public key and the signed enclave out-
put. Using the same format as Azure’s sample code [7], the
attestation quote and public key are about 11.10KB with
base16-encoded hashes. The size of the signed enclave
output depends on the PCF’s result (PCR). The fixed
fields (i.e., HID, HPCR and Sig) are 640 bytes in total.

8. Discussion & Future Work

We advocated that readily available TEEs can pro-
vide a cost-effective and performant solution in Industry
4.0 settings, where lack of trust relations among entities
can hinder collaborations. To address this problem, we
presented PraaS, a system enabling dataset owners to
obtain verifiable proofs of properties for their confidential
datasets to convince potential dataset users about the
value of the datasets. We showed that PraaS can handle
large static and streaming datasets with low cost, high
scalability and low latency.

One question is whether trusting the TEE manufac-
turer is an acceptable trust assumption. We note that
similar assumptions are being already made: In Machine-
Learning-as-a-Service, confidential datasets are exposed to
the provider. Similarly, cloud office software (e.g., Google
Docs, Microsoft Office) can see confidential data. PraaS
relaxes these assumptions to only that the TEE hardware
is genuine and up-to-date, so that neither the service nor
the infrastructure provider has access to the confidential
data and can tamper with the property computation.

Detection of covert channels during the inspection of
the PCF code can be especially difficult. If the potential
user colludes with the PraaS or infrastructure provider,
it may be possible to leak confidential data. Separating
the roles of these entities and using PCFs from trusted
sources can reduce such risks for dataset owners. The
dataset owners also have the prerogative to decline any
custom PCF code from potential users if they are not
confident about its behavior after inspection.

One potential issue is that a potential dataset user
is only interested in the property computation output as
given in the proof. To prevent leakage of sensitive data, the
dataset owner can utilize differential privacy (DP) [13] in
the output. PraaS can facilitate easy usage of DP by inte-
grating it into the enclave template. One can also combine
ZKPs with PraaS, especially with sampling: the sample
would be much smaller than the original dataset making
it practical to produce ZKPs about properties, and PraaS
would provide the proof that the sample was produced
uniformly and correctly. Privacy concerns about leaking
sensitive data with the sample can also be addressed this
way. We leave these features for future work.
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