
Delegating Verification for Remote Attestation using TEE

Takashi Yagawa
University of Tsukuba

Tsukuba, Ibaraki, Japan
yagawa@osss.cs.tsukuba.ac.jp

Tadanori Teruya
AIST

Koto-ku, Tokyo, Japan
tadanori.teruya@aist.go.jp

Kuniyasu Suzaki
Institute of Information Security

Yokohama, Kanagawa, Japan
suzaki@iisec.ac.jp

Hirotake Abe
University of Tsukuba

Tsukuba, Ibaraki, Japan
habe@cs.tsukuba.ac.jp

Abstract—Remote Attestation (RA) can check the status of
target IoT devices and cloud platforms from remote loca-
tions. In RA, a user is presented with evidence by the target
to evaluate its status, verified using a dedicated service or
tool. However, the increase in IoT devices and the expansion
of microservices make the responsiveness of RA challenging.
As a solution, we propose the verification delegation to easily
increase the number of verification services. The verification
delegation enables guaranteed verification on any platform
through the Trusted Execution Environment (TEE). This
paper implements delegated verification service using Intel
Software Guard Extensions (SGX) as TEE. The evaluations
of the implementation show that our proposal is scalable and
practical with excellent runtime performance.

1. Introduction
Modern service platforms, including cloud computing

and IoT, are becoming increasingly important. However,
users of both platforms need help because the devices
hosting them are physically inaccessible or difficult to
access, resulting in difficulties assessing whether they are
properly operated.

Remote attestation (RA) [11] is a means of remotely
verifying the authenticity and integrity of target devices
and programs. An IoT device or a cloud platform to be
verified is called an attester, which presents evidence for
legitimacy. The evidence includes information that only
trusted security hardware components can derive as a basis
for authenticity. That component is the Trusted Execution
Environment (TEE), for example, Trustzone-M in IoT
devices or Intel SGX in cloud platforms. Users can verify
the evidence to confirm the authenticity and integrity of
the attester.

The content of evidence depends on the specifications
of the device and RA. Dedicated verification services
and tools are often provided since the verification content
must also be tailored to these specifications. However, the
increase in the number of IoT devices and the growing
adoption of microservices pose challenges to the respon-
siveness of verification services. In edge computing, many
IoTs execute RA to TEEs in the cloud [9], [14]; in
Function as a Service, each small program requires RA
unless a dedicated design [7], [27]. These increase the
number of verification requests, which, if concentrated on
a few verification servers, can result in delayed responses
or no longer accepted requests [20]. Furthermore, since
these are real-time critical, the geographic remoteness of
the verification servers may not satisfy the requirement.

Because verification services need to be operated by a
limited number of trusted institutions, there are limits to
what can be solved by scaling their servers. Users could
perform verification themselves, but they would need to
obtain a separate endorsement of authenticity and then
perform verification that meets the RA’s specifications.
That is very costly for most users who want to use RAs
easily.

In the context of IoT, Swarm Attestation [8], [26]
could alleviate this problem. Swarm Attestation is a tech-
nology that can collectively verify devices in the same
network, contributing to the scalability of RA for IoT
devices. In addition, it is often profitable for IoT device
deployers to build dedicated verification services for many
IoT devices. However, in the case of TEE on a cloud
platform, these cannot apply because requests from many
users are concentrated on a single online verification
service.

Therefore, primarily targeting TEE on cloud plat-
forms, our research aims to implement a verification ser-
vice that maintains responsiveness even when verification
requests increase. To achieve it, we propose a verification
delegation process that allows for the secure deployment
of verification services on servers managed by a third
party. The verification delegation process is independent
of the verification program and can be applied to any
TEE as well as IoT device verification service. Figure 1
shows an overview of the verification delegation process.
A trusted party issues certificates to the vetted verification
program in TEE in the process on a third-party server. The
corresponding program and the signature key are managed
in TEE on the third-party server. TEE guarantees the
authenticity and integrity of the program and data, even on
an untrusted server. Therefore, the verification delegation
process can quickly increase the number of third-party
servers verifying evidence of RA without increasing the
number of trusted entities. When a user uses it, he or she
can determine if the result is trustworthy by verifying the
signature given to the verification result. Users can also
select from among them those that are available or close
in the distance to improve the response time of RA.

As a proof of concept, we have implemented an RA
with Intel Software Guard Extensions (SGX) [15] that
implements the verification delegation process and uses
delegated verification services. Its performance evaluation
shows that the overhead due to verification delegation
is small and practical. In addition, security analysis for
this implementation shows that verification delegation is
straightforward and robust.

Trusted Party

User 1

Third Party
Server 1

TEE

… Third Party
Server n

TEE

Third Party
Server 2

TEE

User 2 User n
…

Delegate

Request

Figure 1. Overview of our proposal: the solid arrow indicates the
execution of the delegation process by a trusted party. The dashed arrow
indicates that the user can arbitrarily select one server to verify the
evidence of RA.

In summary, the contributions of our study are as
follows:

• We present a secure delegation process for eas-
ily building a verification service to improve the
responsiveness of RA. (Section 4)

• The verification server supporting the delegation
process demonstrates that the delegation process
is practical. In our implementation, we modified
an existing verification server and used Intel SGX
as the TEE. (Section 5)

• Based on that implementation, we performed a
security analysis and performance evaluation. Fur-
thermore, we discuss the challenges to making the
delegation process more practical. (Section 6 and
7)

2. Background

2.1. Remote Attestation

Remote Attestation [11] allows the user to verify
the authenticity and integrity of the target device and
application before remote access. That is completed by
verifying the evidence of the target device. The Root
of Trust is divided into three types: hardware-based,
software-based, or hybrid-based [10]. In hardware-based,
hardware modules such as TPMs are typical. Although
the protection is strong, RA specifications are hardware-
dependent, and updating them is difficult. In software-
based environments, the root of trust is established by
assuming the conditions under which an attack is possible
and performing scans to make it impossible. While it has
the advantage of being hardware-independent, it must be
carefully configured to prevent remote attacks. In hybrid-
based, the Root of Trust consists of minimum hardware
and software rooted in them. Its advantage is that the soft-
ware part can be updated; for example, online updates can
fix TEE vulnerabilities. RA has been studied as a security
countermeasure for IoT devices without rich protection
functions. The Root of Trust can be used with TPMs,

TEEs, or defense mechanisms [20]. RA is also used in
some TEEs. TEE is an extension of the CPU that protects
the confidentiality of programs and data in memory. The
specifications vary from CPU vendor to CPU vendor. The
Root of Trust for TEE is a hardware key burned into the
CPU.

2.2. Intel Software Guard Extensions (SGX)

Intel SGX is a TEE for Intel CPU that guarantees
the confidentiality and integrity of programs and data in
memory through instruction set extensions and dedicated
hardware. The protected area containing programs and
data is called the enclave and is stored in the Enclave
Page Cache (EPC), a memory area CPU allocates at boot
time. Direct access to EPC is denied by the CPU, even
from OS or hypervisor. The contents of EPC are decrypted
only during CPU computation, and no system calls are
allowed in an enclave. For developers, Intel distributes an
SGX SDK for the operation of the enclave. An enclave
has two identities: MRSIGNER and MRENCLAVE. The
former indicates the creator of the enclave and is the SHA-
256 hash value of the public key corresponding to the
signature given to the enclave. The latter is a SHA-256
hash value for enclave attributes and content. This value
will also change if the environment changes, such as the
execution platform changes. These values are used by RA
and SGX functions for authenticity and integrity checks.

Currently, Intel has adopted an RA method called
ECDSA Attestation [19] for SGX. The evidence gener-
ated by ECDSA Attestation is called Quote, which con-
tains hardware information, security version information,
MRENCLAVE and MRSIGNER of the target enclave,
and the trust chain from Quote to Intel CA via the
hardware key in CPU. ECDSA Attestation also allows
third parties other than Intel to build their own attes-
tation infrastructure. To support this, Intel distributes a
program and tools called Intel SGX Data Center Attesta-
tion Primitives (DCAP) [1], [13]. DCAP provides Quote
Verification Library (QVL) and Provisioning Certificate
Cathing Service (PCCS) to allow third parties to verify
Quote. QVL is the program for verifying Quote. PCCS is
a cache server that third parties can build and use. The
cache data is provided by Intel Provisioning Certificate
Service (PCS). PCS distributes the data and certificates
required for verification.

QVL verifies that (1) the trust chain from Quote to
Intel CA has not been tampered with, (2) the key used
for it has not expired, (3) the information provided in
Quote meets the criteria, (4) the appropriate QE is used,
and (5) the target enclave is as expected. However, only
(5) must be performed by the user due to its nature.
All other verifications are performed using data that the
verification server can obtain from PCS/PCCS. The data
used for each verification item are (1) the PCK certificate,
(2) the PCK certificate and the revocation list applicable
to the intermediate CA used for the certificate, (3) the
MRSIGNER of the Intel QE, and (4) the latest security
version information of the CPU and PCE. Since all of
these data are signed by Intel, an attacker cannot forge or
alter them.

⑤ Request Verification

Trusted Party

User

Third Party

③ Perform
Delegation

④ RA

Could
Service

① Send Verification Code

Third Party
Server

TEE

② Launch
Verification Program

IoT

Figure 2. This describes the process overview of the delegation process.
The red arrow indicates the examination phase, the yellow arrow is the
delegation phase, and the green arrow is the verification phase.

3. Adversarial Model and Assumption

Our proposed process involves three entities: Trusted
Party, Third Party Server, and User.

A trusted party is unconditionally trusted and must be
a minimal organization. It also functions as a certification
authority that issues certificates for validation delegation.
The proposal assumes that a trusted party’s behavior and
the data it provides are always correct and robust.

A third-party server is a general-purpose server with a
TEE managed by a third party other than a trusted party;
only the programs executed and data stored inside the
TEE are guaranteed confidentiality and integrity. There
are multiple third-party servers worldwide, and multiple
third parties can increase their number. In our proposal,
we do not trust the entire third-party server; we only trust
the programs in the TEEs identified by the RA.

The user validates RA evidence using a third-party
server for RA on any cloud platform or IoT. The user also
verifies the signature of its evidence verification results.
At this time, it is assumed that the user knows the issuer
certificate of a trusted party. There will be numerous users
worldwide.

The adversary’s goal is for users to execute RA on
vulnerable or rogue platforms without detection. That is
possible, for example, if the cloud vendor can generate
fraudulent evidence or tamper with evidence. It can also be
caused by a malicious or lazy verifier who fails to perform
proper verification. We assume an adversary can manipu-
late any program on the platform where SGX is installed,
including OS, BIOS, and hypervisor, using administrative
privileges. The adversary can also eavesdrop, delete, and
falsify packets in an arbitrary network. Furthermore, the
adversary can build and use a new rogue verification
server that performs improper verification. However, side-
channel attacks, such as timing attacks, are not considered.
Also, availability-related attacks, such as denial-of-service
attacks, are not considered.

4. Design

In this section, we describe our proposal for the dele-
gation process. First, we present the overall flow in Section
4.1, and then describe the detailed process for each phase.

4.1. Process Overview

Figure 2 illustrates an overview of the delegation pro-
cess. The delegation process is divided into three phases:

TEE

Trusted Party

⑥ RA Verification

Third Party

① Deploy
 Program

④ RA

② Create Key Pair & Issue CSR

③ Request Delegation

Third Party Server

pub prv csr

Use prv

⑤ Response
⑦ Issue

 Cert

cert

evidence

Figure 3. The trusted party delegates verification to a third-party server.
The third party is a person or organization that intends to build the
delegated verification service. Prv is a delegation key, which can be
verified with pub; the public key is included in the CSR.

the examination phase, the delegation phase, and the ver-
ification phase. In the examination phase, (1) a trusted
party examines whether the sent verification code is le-
gitimate. The delegation phase ensures that the validation
can be performed securely on (2) the validation program
invoked by the third party through (3) the vetting of a
trusted party. In the verification phase, (4) a user executes
RA against other platforms and (5) verifies its evidence
using the delegated verification service on the third-party
server. Note that these phases do not have to be executed
consecutively.

4.2. Examination Phase

A third party first creates the program code for verifi-
cation and submits it to a trusted party. The trusted party
examines the program code that was sent. Specifically, the
trusted party must check to see if the verification program
has items that should be verified, if there are any known
vulnerabilities, and if there is any built-in malware. These
are difficult to screen rigorously, but existing tools can
alleviate the problem. We discuss it in more detail in 7.1.
If the verification program passes the review, the trusted
party builds and signs the verification program.

Anyone can use the verification program created in
this way. Since the trusted party knows the program’s
identifier, it can detect if the program has been tampered
with in the delegation phase.

4.3. Delegation Phase

Figure 3 shows the flow for verification delegation. (1)
At first, a third party launches the verification program
that passes the examination phase on a third-party server.
(2) The third-party server then generates an asymmetric
key pair in the same TEE and issues a Certificate Signing
Request (CSR). (3) Afterward, the third party requests a
trusted party to perform RA for the verification program
running in TEE. (4) The trusted party accordingly executes
RA to it. In response to this request, (5) the third-party
server returns with the CSR, along with evidence of the
authenticity and integrity of the verification program. (6)
The trusted party verifies the received evidence and, (7)
if there are no problems, issues a certificate using the
received CSR. Since then, the signature key has been
called the delegation key, and the corresponding certificate
is called the delegation certificate in our paper.

③ Request
Verification

⑤ Response
Result & Cert

⑥ Confirm
ResponseUser

① RA

Could
Service

TEE ④ Verification & Sign

Third Party Server

prv

② Send Evidence

evidence

Result Sign

cert

IoT

Figure 4. A user requests verification of RA evidence from a third-party
server. If the delegation phase has already been executed, the user can
use the cert to verify the signature given to the result.

4.4. Verification Phase

Figure 4 shows the verification phase using a delegated
verifier. (1) First, A user executes RA against an external
cloud service or IoT and (2) receives the evidence about
it. (3) The user uses the delegated verifier to verify the
evidence. (4) The delegated verifier executes the veri-
fication program and signs the verification results with
the Delegation Key. Both of these are executed within
TEE. (5) The delegated verifier then returns the signed
verification result and delegation certificate and issuer
certificate to the user. (6) The user checks the verification
result and verifies the certificate chain from the signature
with the result to a trusted party. As described above, users
can check the operation of the verification program only
with signature verification.

5. Proof of Concept

This section presents a proof of concept using Intel
Software Guard Extensions (SGX) as a TEE for verified
program protection. In the verification phase, we assume
a user executes RA to the enclave running on a different
SGX platform.

5.1. Implementation

We implemented a proof-of-concept verification ser-
vice by modifying Intel’s publicly available Quote Ver-
ification Service (QVS) and protecting it with gramine
(formerly Graphene-SGX). QVS is a REST API server
for QVL, and validation by QVL is performed by sending
a quote using the POST method. Gramine is a tool for
applying SGX without code modification by including
libOS in the enclave. A container running QVS was
built and signed with Gramine Shielded Containers (gsc)
to apply gramine. The user can use the protected QVS
container (gsc-qvs) no differently than a normal QVS.

In the examination phase, a trusted party verifies the
code and behavior of QVS and uses gsc to make QVS
compatible with SGX. At this time, a trusted party uses its

own private key to sign the enclave. A trusted party adds
its MRENCALVE to the allowlist of validation program
identifiers. This allowlist, maintained only by a trusted
party, is used in the delegation phase.

In the delegation phase, a trusted party performs a
gramine-compliant RA on the gsc-qvs deployed on a third-
party server. At this time, gsc-qvs provides not only a
quote but also a CSR corresponding to the delegation key.
The OpenSSL EVP function is used for key generation
and CSR issuance. However, the current implementation
is limited to issuing CSR in the enclave, and tying this
to the RA in the gramine is a future task. The RA is the
responsibility of the trusted party, which can check if the
deployed gsc-qvs have been vetted by using the allowlist
of validation program identifiers. If the verification suc-
ceeds, the trusted party signs the CSR with its private key
and issues a delegation certificate. Then, a trusted party’s
self-certificate and the delegation certificate are sent to
a third-party server. SGX does not have to protect these
certificate chains.

In the verification phase, the user performs an RA
against Enclave on a different SGX platform than the
third-party server. The user sends a quote to gsc-qvs’
REST API on the third-party server for verification. gsc-
qvs verify the Quote with QVL and then sign the verifi-
cation result with a delegation key. gsc-qvs then responds
to the user with the signed verification result, the delega-
tion certificate, and the issuer’s certificate. The user can
verify the signature with the certificates to confirm that a
legitimate verification program has worked.

5.2. Security Analysis

The delegation phase may be subject to man-in-the-
middle attacks. A malicious third party may request RA
from the third-party server to issue a fraudulent delegation
certificate. However, during the verification phase, users
use CA certificates to verify the delegation certificate, so
a delegation certificate issued by a non-trusted party will
be detected.

In the verification phase, the cloud vendor may try
to execute an illegal RA by replacing the QE and Quote
items with malicious ones. However, this is only possi-
ble if the verification is legitimate since the verification
confirms the MRSINGER of the QE. Since a delegated
verifier without legitimate verification will not pass the
examination of a trusted authority, the user can detect a
rogue delegated verifier by using a certificate. After the
review, verification programs cannot be tampered with,
even by using administrative privileges.

In addition, the key that signs the verification results
is generated inside the TEE so that no one can steal it.
Since only the examined verification program can handle
the private key corresponding to a certificate, the user can
be sure that a valid verification has been performed using
the certificate.

The administrator of the delegated verifier may also
conduct a replay attack that returns previous verification
results using an unprotected program. In our proposal,
this is prevented by using nonce. The verification program
signs verification results containing nonce, which allows
users to detect past verification results.

0

20

40

60

80

100

SGX : No

Sig : No

SGX : Yes

Sig : No

SGX : No

Sig : Yes

SGX : Yes

Sig : Yes

Tu
rn

ar
ou

nd
 T

im
e

(m
s)

Figure 5. Compare the turnaround time in four cases for evaluating
verification overhead. SGX: indicates whether the verification program
is running on Enclave. Sig: indicates whether a delegation signature is
attached to the verification result.

Although availability is not considered in this research,
it is difficult to become a single point of failure because
the number of verifiers can be easily increased. Therefore,
the system is more resistant to DoS attacks than conven-
tional systems.

6. Evaluation

This section presents the results of evaluation experi-
ments using the implementation of section 5.1. The eval-
uation environment of our platform has Intel(R) Xeon(R)
Silver 4314 CPU, 64GB RAM, Ubuntu22.04 OS, 6.2.0-
36-generic kernel. SGX SDK version is 2.22.100.3 and
SGX PSW version is 1.19.100.3-jammy1.

We used k6 for our evaluation. The scenario posts a
quote serialized in base64 to the validation API. Measure-
ments were taken for 10 seconds and the average value
was used.

6.1. Runtime Overhead

The additional overhead compared to the original
ECDSA Attestation is signing the verification result with
the delegation key. Although a delegation phase requires
time to review the verification program and issue the
certificate, this is done before a verification phase and
does not represent a runtime overhead.

Figure 5 shows the time between posting a quote and
receiving a response when only one user existed. We
compared four cases: SGX enabled or not, with or without
a delegation signature. The measurement results show that
the overhead due to SGX is about 4 ms and the overhead
due to signatures is about 5 ms. In addition, the signature
overhead remains the same even when processing within
an enclave. The total overhead with our proposal is 10
ms, which is tolerably tiny enough to be acceptable in
practice.

6.2. Effect of Simultaneous Connections

We evaluated how changing the number of simulta-
neous connections would change the turnaround time for
a request to a single third-party server. Specifically, we
measured it by varying the number of users from 1 to 15
with the k6 option. Figure 6 shows native qvs versus our
implementation of gsc-qvs. Both graphs show the same

0

30

60

90

120

1 3 5 7 9 11 13 15Tu
rn

ar
ou

nd
 T

im
e

(m
s)

Number of Users

qvs gsc-qvs

Figure 6. Measurement of turnaround time relative to the number of
users. The orange line shows the performance of native qvs and the
blue line shows the performance of gsc-qvs with SGX and delegated
signatures.

0

50

100

150

200

1 3 5 7 9 11 13 15

Nu
m

be
r

of
 R

eq
ue

st

Number of Users

qvs gsc-qvs

Figure 7. Measurement of the number of requests processed per second
relative to the number of users. The orange line shows the performance
of native qvs and the blue line shows the performance of gsc-qvs with
SGX and delegated signatures.

transitions, but gsc-qvs has a longer turnaround time due
to overhead. 1 to 4 users have a faster turnaround time.
This seems to be because qvs and gsc-qvs perform asyn-
chronous processing using multiple threads. At 8 users,
the turnaround time increases, and from there, it grows
almost linearly. Figure 7 shows the number of requests
processed per second relative to the number of users.
From the 9th user, the number of requests remains almost
flat, indicating that the number of requests that can be
processed has reached its limit. Therefore, we conclude
that many requests caused linear delays.

If more real-time performance is required, or if more
requests need to be processed, a third party can easily
scale out the verification server using our delegation pro-
cess. This is discussed in section 7.3.

7. Discussion

This section discusses practical issues regarding the
proposed process.

7.1. Verification Code Review

In the examination phase, reviewing a verification code
assures proper verification is performed on the program.
However, verification programs vary for each security
hardware component and its RA specifications. The re-

sulting increase in the amount of code that needs to be
reviewed can burden a trusted party.

Therefore, it is desirable to restrict how the verification
code is written so that tools can be used to check the
verification code. For example, a restriction to separate
verification items by function would allow testing for
elements that must be satisfied per function.

7.2. Updating Delegation Certificate

Delegation certificates are issued in the same number
as the number of deployed verification programs. A trusted
party should properly update or revoke all of them. For
example, when the TCB of a TEE is renewed, a trusted
party revokes the previous certificate as necessary and
must perform a new delegation phase.

As for this job, it is desirable for the verification
program to periodically check for updates. If there are
updates, a new delegation phase is performed and a
new delegation certificate is distributed. Implementing this
function is a future work.

7.3. Scalability

Since SGX supports multiple threads, the verification
service can scale up. However, as indicated in Section
6.2, as RA requirements increase, scale-up alone may
not be sufficient to sustain performance. In addition, in
cases where real-time performance is required, the servers
must be geographically close to each other to reduce
communication delay.

Our work improves scalability by facilitating the scale-
out of the verification service. The examination phase can
automatically perform everything from RA to certificate
issuance. It is much faster and easier than borrowing
a normal certificate issuance process that requires CA
vetting.

However, downloading an endorsement from an online
service during verification may cause a bottleneck. When
using an endorsement, it is desirable to prepare a cache
server like PCCS in SGX or perform caching when the
verification service is idle.

7.4. Physical Security

Physical attacks are expected since third-party servers
are installed in various locations. In fact, many side-
channel attacks have been reported [12], [17]. However,
TEE can take countermeasures against them by updat-
ing its microcode [16]. Remote attestation can check
the microcode updates, so the delegation phase is the
countermeasure to physical security.

However, additional countermeasures may be required
depending on the type of TEE. In the case of the Scalable
SGX we used, the delegation server needs to be cage-
boxed, as it does not guarantee integrity against physical
attacks [18].

7.5. Implementation on Other TEE

Although we implemented the proof of concept in
SGX, our proposed method can also be applied to other

TEEs. This section discusses the feasibility of implemen-
tation in Intel TDX, AMD SEV-SNP, and Arm TrustZone,
which are currently used in practice.

Intel Trust Domain Extensions (TDX) is a new TEE
that provides memory protection on a per-virtual machine
basis called Trust Domain (TD). Its RA is appropriated
from SGX DCAP, and users can see the TD MESURE-
MENT as the TD’s identifier. Therefore, our proposed
method can be applied by a trusted party distributing
a virtual machine image that includes the verification
service.

AMD Secure Encrypted Virtualization - Secure Nested
Paging (SEV-SNP) provides memory confidentiality and
integrity protection, preventing virtual machines from be-
ing attacked by the hypervisor or other virtual machines.
In that RA, address space measurements are provided as
well as identification information about the virtual ma-
chine image. Therefore, the proposed method, like TDX,
can be applied by trusted parties that distribute virtual
machine images, including verification services.

Arm TrustZone includes TrustZone-A for Cortex-A
CPUs and TrustZone-M for Cortex-M CPUs. Both are di-
vided into Normal World, where the normal OS runs, and
Secure World, a protected area with limited functionality.
However, neither of them officially provides RA, which
makes the application of our proposed method difficult.
Using the RA proposed by the researcher may solve this
problem.

VM-type TEEs have the advantage of requiring no
program changes, but keep in mind that they have a larger
TCB and consume more resources because they include
the OS and kernel. Given that tradeoff, SGX, which can
protect only the verification server, remains a reasonable
option for our proposal.

8. Related Works

Proxy Signatures [22] is an early technology that
increases the number of proxy signers through certificates.
In our study, TEE and RA are used to achieve program-
matic delegation of rights on a per-program basis. While
it is possible to delegate verification authority on a per-
server basis, our proposal is superior in that it trusts only
a narrower range of trusted entities without increasing the
number of trusted entities.

Swarm Attestation helps improve RA responsiveness
in IoT. SEDA [8] is the first of its kind and improves the
scalability of RA devices by validating IoT devices on the
same network in batches. SHeLA [25] assumes the use of
advanced verification edge nodes, which could apply to
our proposal.

TM-Coin [23] is a blockchain of TCBs that allows
any miner to become a verifier. SCRAPS [24] proposes an
asynchronous many-to-many RA employing the PubSub
model and using smart contracts to improve the scalability
of verification. They assume that the verifier is honest by
exploiting the properties of the blockchain. We make the
verification server scalable while minimizing the number
of trusted parties in the verification.

In addition to SGX, Intel TDX, AMD SEV-SNP, and
RISC-V Keystone also provide RA capabilities as Re-
mote Attestation for TEE [2], [4], [21]. There is also an
independent RA service for TEE, Intel Trust Authority

(formerly Project Amber) [6], which is an online quote
verification service for SGX and TDX. Microsoft Azure
Attestation [5] is an RA service available for SGX and
SEV-SNP on Microsoft Azure. Since only Microsoft man-
ages the verification servers for this service, the number
of verification servers cannot be increased for the conve-
nience of third parties. Incorporating our proposed method
can make it scalable. Tools for third parties to build
their own verification services include DCAP, which is
available for SGX and TDX, and VERAISON [3], which
is designed to build verification servers for arbitrary TEEs.
These are not intended to verify delegation from trusted
institutions but can be used for our process implementa-
tion.

9. Conclusion

A proof of concept using SGX showed that our pro-
posal’s overhead is about 17 ms, which is practical. Also,
the limit on the number of requests processed suggests
that our delegation process is helpful in increasing RA.

As for future work, we enable the delegation process
to be executed automatically and evaluate its performance.
We will also show the generality of our proposal by
implementing QVS or another verification program on
other TEEs.

Acknowledgement

This work was supported by JST, PRESTO Grant
Number JPMJPR21P6, JST CREST Grant Number
JPMJCR21M3, JSPS KAKENHI Grant Number
JP23H03373, and JST SPRING Grant Number
JPMJSP2124, Japan.

References

[1] Intel(R) Software Guard Extensions Data Cen-
ter Attestation Primitives. https://github.com/intel/
SGXDataCenterAttestationPrimitives.

[2] Intel® Trust Domain Extensions. https://www.intel.com/content/
dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf.

[3] Veraison. https://github.com/veraison.

[4] AMD SEV-SNP: Strengthening VM Isolation with Integrity Pro-
tection and More. White Paper, January, 53:1450–1465, 2020.

[5] Microsoft Azure Attestation, Jan. 2022. https://azure.microsoft.
com/ja-jp/services/azure-attestation/.

[6] Intel® Trust Authority, Sep. 2023. https://www.intel.com/content/
www/us/en/security/trust-authority.html.

[7] Fritz Alder, N Asokan, Arseny Kurnikov, Andrew Paverd, and
Michael Steiner. S-FaaS: Trustworthy and Accountable Function-
as-a-Service using Intel SGX. In Proceedings of the 2019 ACM
SIGSAC Conference on Cloud Computing Security Workshop,
pages 185–199, 2019.

[8] Nadarajah Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-
Reza Sadeghi, Matthias Schunter, Gene Tsudik, and Christian
Wachsmann. SEDA: Scalable Embedded Device Attestation. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 964–975, 2015.

[9] Kassem Bagher and Shangqi Lai. Sgx-stream: A secure stream
analytics framework in sgx-enabled edge cloud. Journal of Infor-
mation Security and Applications, 72:103403, 2023.

[10] Alexander Sprogø Banks, Marek Kisiel, and Philip Korsholm.
Remote Attestation: A Literature Review. arXiv preprint
arXiv:2105.02466, 2021.

[11] Henk Birkholz, Dave Thaler, Michael Richardson, Ned Smith, and
Wei Pan. Remote ATtestation procedureS (RATS) Architecture.
RFC 9334, January 2023.

[12] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang,
Zhiqiang Lin, and Ten H Lai. SgxPectre: Stealing Intel Secrets
from SGX Enclaves Via Speculative Execution. In 2019 IEEE
European Symposium on Security and Privacy (EuroS&P), pages
142–157. IEEE, 2019.

[13] INTEL CORP. Product brief Intel SGX Data Cen-
ter Attestation Primitives (Intel SGX DCAP), 2019.
https://www.intel.com/content/dam/develop/public/us/en/
documents/intel-sgx-dcap-ecdsa-orientation.pdf.

[14] Cláudio Correia, Miguel Correia, and Luı́s Rodrigues. Omega: a
Secure Event Ordering Service for the Edge. In 2020 50th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 489–501, 2020.

[15] Victor Costan and Srinivas Devadas. Intel SGX Explained. IACR
Cryptol. ePrint Arch., 2016(86):1–118, 2016.

[16] Shufan Fei, Zheng Yan, Wenxiu Ding, and Haomeng Xie. Security
Vulnerabilities of SGX and Countermeasures: A Survey. ACM
Computing Surveys (CSUR), 54(6):1–36, 2021.

[17] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. SGX-
Bomb: Locking Down the Processor via Rowhammer Attack. In
Proceedings of the 2nd Workshop on System Software for Trusted
Execution, pages 1–6, 2017.

[18] Simon Johnson, Raghunandan Makaram, Amy Santoni, and Vinnie
Scarlata. Supporting intel sgx on multi-socket platforms. Intel
Corp, 2021.

[19] Simon Johnson and Vinnie Scarlata. Supporting Third Party Attes-
tation for Intel SGX with Intel Data Center Attestation Primitives,
2018.

[20] William A. Johnson, Sheikh Ghafoor, and Stacy Prowell. A Tax-
onomy and Review of Remote Attestation Schemes in Embedded
Systems. IEEE Access, 9:142390–142410, 2021.

[21] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović,
and Dawn Song. Keystone: An Open Framework for Architecting
Trusted Execution Environments. In Proceedings of the Fifteenth
European Conference on Computer Systems, pages 1–16, 2020.

[22] Masahiro Mambo, Keisuke Usuda, and Eiji Okamoto. Proxy
Signatures: Delegation of the Power to Sign Messages. IEICE
transactions on fundamentals of electronics, communications and
computer sciences, 79(9):1338–1354, 1996.

[23] Jaemin Park and Kwangjo Kim. TM-Coin: Trustworthy manage-
ment of TCB measurements in IoT. In 2017 IEEE International
Conference on Pervasive Computing and Communications Work-
shops (PerCom Workshops), pages 654–659. IEEE, 2017.

[24] Lukas Petzi, Ala Eddine Ben Yahya, Alexandra Dmitrienko, Gene
Tsudik, Thomas Prantl, and Samuel Kounev. SCRAPS: Scalable
Collective Remote Attestation for Pub-Sub IoT Networks with
Untrusted Proxy Verifier. In 31st USENIX Security Symposium
(USENIX Security 22), pages 3485–3501, 2022.

[25] Md Masoom Rabbani, Jo Vliegen, Jori Winderickx, Mauro Conti,
and Nele Mentens. SHeLA: Scalable Heterogeneous Layered
Attestation. IEEE Internet of Things Journal, 6(6):10240–10250,
2019.

[26] Ioannis Sfyrakis and Thomas Gross. A Survey on Hardware
Approaches for Remote Attestation in Network Infrastructures.
CoRR, abs/2005.12453, 2020.

[27] Shixuan Zhao, Pinshen Xu, Guoxing Chen, Mengya Zhang, Yin-
qian Zhang, and Zhiqiang Lin. Reusable Enclaves for Confidential
Serverless Computing. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 4015–4032, Anaheim, CA, August
2023. USENIX Association.

