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Abstract—Modern mobile devices leverage ARM TrustZone
to implement a Trusted Execution Environment (TEE). The
security-critical services, called Trusted Applications (TAs),
deployed in these TEEs form the backbone of those devices’
security architectures. Unfortunately, TAs are not free from
bugs and constitute the biggest attack surface of the TEE. A
vulnerability in a TA can have devastating consequences, fun-
damentally compromising the whole system’s security. Given
the locked-down nature of COTS smartphones, the analysis
of closed-source TAs remains challenging for independent
security researchers.

In this paper, we present SyncEmu to enable dynamic
analysis of proprietary TAs found on COTS Android devices.
To this end, we develop a framework to execute unmodified
TEE firmware in an emulated environment (so-called rehost-
ing). Using SyncEmu, we successfully rehost TrustedCore, a
closed-source TEE implementation found on older Huawei
devices. Furthermore, we propose and implement a novel
technique called CA-in-the-loop, that allows SyncEmu to for-
ward realistic requests of Client Applications (CAs) running
on a physical smartphone to the rehosted TAs, pushing the
boundaries of state-of-the-art in TEE rehosting.

1. Introduction

Modern ARM-based mobile devices leverage ARM
TrustZone [2] to provide a Trusted Execution Environ-
ment. The device is split into two isolated execution
environments: the normal world (NW) and the secure
world (SW). While the NW runs a commodity OS (e.g.,
Android) and user-installed Apps, the SW hosts vendor-
controlled firmware protected by TrustZone’s hardware
extensions. Only software deployed inside the SW has
access to the full hardware of the device, so even if
the NW is compromised, security guarantees by the TEE
still hold [36]. As part of the TEE firmware, vendors
ship Trusted Applications that implement security-critical
services like device attestation [4], [30], digital rights
management [17], or (biometric) authentication [18].

Because the TEE builds the backbone of the security
architecture, a vulnerability in a TA can lead to full device
compromise [9]. Consequently, thorough security testing
of code running inside the TEE is vital to ensure the
confidentiality and integrity of security-critical data. But
as seen in the past, TEEs often have severe shortcomings
in their security design and are prone to vulnerabili-
ties [10]. This urges for possibilities to analyze proprietary
TEE firmware more extensively. However, TEE firmware
deployed on COTS mobile devices is shipped in a closed-
source fashion, making static analysis cumbersome. Ad-
ditionally, the locked-down nature of COTS smartphones
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(e.g., no debug interfaces are accessible) prevents on-
device instrumentation of software running in the TEE,
limiting powerful dynamic analysis techniques such as
fuzzing [7].

Recent approaches propose a remedy for this challenge
by trying to execute TEE firmware in a specially crafted
emulated environment. This process is often called rehost-
ing to differentiate it from full emulation because the goal
is not to build perfect emulators for physical hardware as
this is often not necessary for security analysis [13]. The
vast amount of peripherals and the fact that they are often
proprietary makes building perfect emulators cumbersome
and sometimes impossible. Instead, in rehosting, we exe-
cute firmware in a rehosting environment that recreates the
original device sufficiently good enough, finding a trade-
off between precise emulation and practicability.

When trying to employ rehosting to COTS smart-
phones, Harrison et al. [20] identified that building a
rehosting environment capable of running the entire soft-
ware stack (e.g., Android and the TEE firmware) is in-
feasible. In their state-of-the-art approach, they propose
partial rehosting, dividing the software stack and focusing
on components targeted for security analysis (e.g., TEE
firmware). In essence, they minimize the required rehost-
ing effort by excluding the huge NW software stack, thus
saving the task of implementing the majority of peripheral
models found on smartphones (e.g., screen and camera).
Instead, they mimic the existence of NW software by
partially re-implementing its behavior in simple models.

However, simplifying the complex NW (i.e., Android,
user Apps, and CAs) comes with huge costs in the fidelity
of the rehosting environment. The effects are reported
by Harrison et al. [20], who identify low code coverage
during TA analysis. CAs (running in the NW) and TAs
are highly intertwined, following specific stateful custom
protocols [7]. For example, to send a request to a TA
handling the encryption of data on a real device, a CA
must interact with the user, Android, the file system,
and the TA multiple times. Meanwhile, TAs build up an
internal state, thus reacting differently to CA requests
and therefore executing varying code blocks. State-of-
the-art TEE rehosting approaches are currently limited
to re-implemented and simplified CA software models,
preventing realistic CA-to-TA interactions and therefore
hindering holistic security analysis. On the contrary, re-
hosting CAs is also unreasonable, as they are, similar
to their TA counterparts, often proprietary and require
interactions with the rest of the device, thus we would
have to rehost the entire NW software stack, which is not
feasible [20].

Contributions. We propose SyncEmu to solve this
conflict of goals by implementing a state synchronization



mechanism between a rehosting environment and a rooted
COTS smartphone. Our approach is motivated by the fact
that trying to manually re-implement CA models is both
cumbersome and inherently incomplete while entirely
emulating CAs is also not practical. Instead, SyncEmu
follows a hardware-in-the-loop principle, synchronizing
a real device hosting fully functional CAs with rehosted
TAs running in an emulated environment. In summary, we
make the following contributions:

e We design and implement SyncEmu to enable
the execution of real-world TAs in an emulated
environment. While some industry research teams
have implemented emulators for their devices [20],
their emulators are not publicly available.

e We describe and implement the novel technique
CA-in-the-loop, that allows the synchronized ex-
ecution of CAs running on a rooted smartphone
with rehosted TAs.

e We evaluate SyncEmu for an open-source and
closed-source TEE implementation (Linaro’s OP-
TEE [29] and Huawei’s TrustedCore found on
Huawei P9 Lite smartphones) showcasing its prac-
tical applicability. We make SyncEmu publicly
available.

2. Background

ARM TrustZone. The majority of mobile devices are
powered by the ARMv8-A [1] architecture that supports
up to four privilege levels, called exception levels (ELs),
and a partition into two isolated execution environments.
Figure 1 gives an overview. For simplicity, we exclude
EL2 as software running at this level (e.g., hypervisor)
is not in the scope of this work. On COTS smartphones,
the NW (light gray) comprises a feature-rich Rich OS at
N-EL1 (e.g., Android) and user-installed Apps together
with vendor-provided CAs at N-EL0. In general, software
running in the NW can be modified by the user after
the device is rooted [24], [34], [36]. In contrast, the
SW is used by the vendor to deploy integrity-protected
TEE firmware. Security-critical services are implemented
by TAs which are managed by a TrustZone Operating
System (TZOS) running at S-EL1. CAs may request se-
curity services by issuing system calls (SVCs) to a TEE
Driver running as part of the Rich OS that will execute a
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Figure 1. ARMv8-A architecture with common software components.
Light gray components run in the normal world, while dark gray ones
are part of the secure world. We indicate the vertical world isolation with
a solid line, while the dashed lines represent the horizontal privilege iso-
lation via exception levels. Client Applications and Trusted Applications
communicate via inter-process communication (IPC).

secure monitor call (SMC) taking the execution to EL3.
The secure monitor interprets arriving SMCs and handles
world switches.

Lifecycle of Trusted Applications. CAs running in
the NW request security services offered by TAs via a
client-server principle. GlobalPlatform provides the TEE
Client API [15] and TEE Internal Core API [16] which try
to standardize the foundation of CA to TA communication.
In essence, a CA implements the following protocol to
request a service offered by a TA:

1) TEEC_InitializeContext: The fundamen-
tal object for a logical connection to the TEE
is the TEE Context. As CAs and TAs are
running in different execution worlds they use
shared memory to exchange data, that is managed
by the TEE Driver at N-ELI.

2) TEEC_OpenSession: To start an interaction
with a TA, the CA prepares a session by sending
a request to the TEE, identifying the TA via a
UUID. During this process, initial data exchanges
can take place (e.g., authentication) and the TA
can run setup routines. If necessary, the TZOS
loads the TA binary from the NW filesystem first.

3) TEEC_InvokeCommand: After the CA re-
ceived a sessionID it can send commands to
the TA instance. To this end, the CA indicates the
requested TA function using a numeric identifier
(called commandID) and parameters passed in
shared memory. Each parameter can be of type
value or memory reference. The content is not
defined by the TEE Client API, allowing the im-
plementation of custom protocols. Usually, a CA
invokes multiple commands during one session,
building up the internal TA state.

4) TEEC_CloseSession: The CA closes the ses-
sion to the TA instance, giving the TEE the
opportunity to clean up associated resources.

5) TEEC_FinalizeContext: Usually, the CA
only ends the TEE Context when it has fin-
ished all communication with the TEE.

In summary, interactions between CAs and TAs have
two layers of state involved. First, the sequence of calls
required to establish a connection to a TA is dictated
by the GlobalPlatform APIs. For example, a TA will
only accept commands after the CA successfully opens a
session. Second, on top of the generic TA interface, TAs
implement custom services. Thus, a CA might be required
to invoke a long sequence of TEEC_InvokeCommand
calls to conduct an operation. For example, a TA offering
secure storage requires a CA to open, read, write, and
close a file. In general, a TA can be described as a state
machine, where each request by the CA can be seen as
input, thus their execution is intertwined.

3. SyncEmu

State-of-the-art rehosting approaches only run the TEE
firmware, as emulating the complex NW software stack
is not feasible (Section 1). Unfortunately, this limits the
build-up of the TA state, as simple CA models can not
create requests following the expected TA’s API. Even
worse, CAs are highly dependent on interactions with
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Figure 2. SyncEmu’s approach. We modify the TEE driver of D-NW
such that it can dump shared memory and instrument SMC execution.
If a CA in D-NW (@D requests a TA service, it fills shared memory
by interacting with the TEE driver via system calls. When done, the
TEE driver will try to perform an SMC @ which is suspended by
SyncEmu. Meanwhile, the shared memory content and SMC are for-
warded to SyncEmu’s rehosting environment Q. In @, SyncEmu injects
the received CA requests in R-SW, thus feeding the same input into the
rehosted TA like into the TA running in D-SW.

the rest of the NW, the device, and the user to generate
meaningful inputs for TAs. Thus, rehosting approaches
excluding a functional NW are inherently unfit to fully
analyze stateful TAs.

SyncEmu overcomes this limitation by synchronizing
the execution of a real physical device’s NW (D-NW) with
a rehosted SW (R-SW) running in an emulator. Figure 2
gives an overview of SyncEmu’s approach. We attach a
rooted mobile device to a host (e.g., a laptop) via USB and
communicate using Android’s debug interface adb. We
note that adb can not be used to instrument SW software.

SyncEmu records and forwards communication by
CAs running in D-NW to corresponding TA instances
executing in R-SW adhering to the TA’s expected protocol.
Thus, the TA running in the emulator receives an exact
copy of the request from the CA running on a fully
functional device. We call this technique CA-in-the-loop
inspired by hardware-in-the-loop [13], with the difference
that we focus on forwarding software dependencies in-
stead of peripheral interactions.

In the end, we aim for an equivalence between the ex-
ecution of our rehosted TA and the one on the physical de-
vice in D-SW, enabling dynamic analysis of highly realis-
tic TA behavior. In the following, we describe SyncEmu’s
two technical contributions: In Section 3.1, we present our
TEE rehosting framework that enables the emulated exe-
cution of real-world TEE firmware. More specifically, we
focus on running the TZOS and TA binaries, allowing for
a TA-generic solution. We decided against emulating TAs
in a standalone fashion, as emulating vendor-specific sys-
tem calls offered by the TZOS is not straightforward [22].
Our framework enables prototyping callback functions to
implement small hardware models and functionality of the
bootloader and secure monitor to boot the TZOS and TAs.

In Section 3.2, we depict SyncEmu’s novel CA-in-the-
loop technique. In contrast to previous work, we focus
on solving strong software dependencies of TAs on CAs
during execution. As CA emulation is not feasible (we
would have to rehost the entire NW), we coordinate the
communication of an on-device CA with the correspond-
ing TA running in R-SW. To this end, we modify the TEE
driver of D-NW to include a forwarding mechanism that
synchronizes requests of on-device CAs with our emulator
at runtime exactly when an SMC is executed.

3.1. Rehosting Framework

To dynamically analyze TAs, we leverage a rehost-
ing environment (Figure 2) of the targeted TEE imple-
mentation (R-SW). As part of SyncEmu, we develop a
rehosting framework enabling the emulated execution of
TEE firmware running on COTS mobile devices powered
by ARMVS-A chips. To that end, we extend avatar? [26]
that provides a configurable machine that is emulated
using QEMU [5]. We use QEMU as our core emulator
as it already comes with support for emulating ARMv8-
A CPUs including the ARM TrustZone feature.

SyncEmu’s rehosting framework enables the imple-
mentation of models to mimic software and hardware
behavior in Python. An overview of SyncEmu’s frame-
work is depicted in Figure 3. In general, SyncEmu is
designed to aid an analyst in manually working through
an iterative refinement process as described by Fasano et
al. [13] with a focus on TEE peculiarities. We illustrate a
concrete practical walkthrough in Section 4.1. At its core,
SyncEmu provides a basis for a rehosting environment that
only needs to be refined for specific requirements of the
targeted TEE implementation. Our rehosting environment
is tailored to run COTS TZOS and TA binaries.

When creating a rehosting environment, the analyst
starts by executing the TZOS and TAs, observing the
logging output to identify errors, and trying to derive
their root cause. Next, the analyst needs to refine the
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Figure 3. SyncEmu’s rehosting framework. The goal is to run unmodified
TZOS and TA binaries (dark gray components). An analyst goes through
an iterative refinement process (big white arrows) to create the rehosting
environment (box with bold dashed line). This comprises the three main
components shown in medium gray. SyncEmu is designed to receive CA
requests via the CA-in-the-loop interface.



environment, repeating this process until the TZOS boots.
To this end, SyncEmu enables setting breakpoints and the
implementation of callback functions to aid the analyst’s
process until all dependencies of the TZOS are handled.
In the following, we present the dependencies of a TZOS
during runtime and SyncEmu’s corresponding solution.

Minimal Bootloader. We do not run the original
bootloader binaries in our emulator, as this comes with
high hardware emulation efforts [20]. Still, we need to re-
implement a small bootloader that loads the TZOS binary
in memory, configures the CPU, and prepares arguments
to ensure a seamless boot process.

SyncEmu’s solution: In our experiments, analyzing
code that configures the MMU (e.g., usage of the page
table base register TTBRO_EL1) turned out to be valu-
able oracles for identifying the physical memory layout.
We leverage avatar®’s configurable machine to adapt the
emulator’s memory layout accordingly. SyncEmu comes
with blueprints for emulating a minimal bootloader, that
configures the CPU, places boot information structures in
memory, and fills registers with argument values, that have
been obtained by selective reverse engineering.

Peripheral Callbacks. During operation, the TZOS
will try to interact with peripherals. On ARM-based
devices, this happens via Memory-Mapped Input/Out-
put (MMIO) accesses, i.e., the TZOS directly reads from
and writes to memory regions mapped to peripheral reg-
isters. Since no models of (proprietary) peripherals are
available in our emulator, SyncEmu needs a strategy to
handle hardware accesses by the TZOS at runtime.

SyncEmu’s solution: A core principle of rehosting
is the observation that a rehosting environment is not
required to give a perfect and complete emulation of every
peripheral [20]. Thus, we emulate hardware behavior at
the MMIO level on a per-read basis. Writes can be ignored
as they do not directly influence the TZOS execution, and
their effect can be handled by subsequent reads. SyncEmu
enables hooking the execution at instructions that access
MMIO regions and mimicking peripheral behavior by
implementing callbacks that inject expected values di-
rectly into corresponding return registers. The analyst can
identify these instructions by looking for polling loops (or
error conditions) during iterative refinement.

Secure Monitor Callbacks. As the TZOS is deployed
in S-EL1 it interacts with the secure monitor at EL3 by
executing SMCs. Similar to the bootloader, we decided to
not run the original secure monitor binary, because of the
high hardware emulation effort required. Nevertheless, we
require a strategy to handle SMCs.

SyncEmu’s solution: Our rehosting framework pro-
vides secure monitor callbacks that are triggered when an
exception level switch to EL3 occurs. We set a breakpoint
at the exception vector table of the TZOS to catch all
SMCs, pausing the TZOS in the process. SyncEmu then
instruments the attached CA-in-the-loop Figure 2, waiting
for arriving SMCs that are intercepted and forwarded on
the attached device (see Section 3.2). When SyncEmu
receives an SMC, it interprets the received data, injects
the content into shared memory, and registers according
to callbacks implemented by the analyst.

3.2. CA-in-the-loop

SyncEmu’s goal is to enable the synchronization of the
NW of a physical device with the rehosted TZOS in our
rehosting environment. This includes all communication
between an on-device CA and a rehosted TA, thus we keep
the device running the CA in the loop. SyncEmu needs to
satisfy the requirement that R-SW receives the equivalent
input as D-SW at the exact same time. D-SW receives its
input by communicating with D-NW, specifically the TEE
driver. Thus, we develop an agent that enables intercepting
and forwarding all data transfer between D-NW and D-
SW to our emulator running R-SW.

We can break this task down into (1) synchronizing
all of the shared memory and parameter registers and (2)
at the exact time when an SMC is executed in D-NW. To
this end, we deploy a modified version of a TEE driver
running as part of D-NW on a rooted smartphone [24].
We provide details for the implementation in Section 4.2.

Shared Memory Synchronization. Shared mem-
ory is usually allocated dynamically by the TEE driver
and is used to exchange data between CAs and TAs.
While TEE driver implementations from vendors may
differ, they loosely follow the TEE Client API (in
other cases more code analysis may be necessary).
TEE drivers based on GlobalPlatform usually manage
SMC__CMD structs representing CA requests. As these are
directly sent to the TEE, they will only hold physical
addresses. A request may include data like the TA’s
UUID, sessionID, or commandID. Furthermore, it
holds pointers to up to four CMD_OP structs that define
parameter types and values. We implement a function
smc_write_out (SMC_CMD) that extracts all payload
associated with a specific CA request and sends the con-
tent to SyncEmu. The exact implementation needs to be
adjusted for the targeted TEE driver, but this comes down
to unrolling the SMC_CMD struct which is a manageable
manual effort considering the fact that TEE drivers are
often open-source since the Android system is mostly
licensed under the GNU General Public License [12].

SMC Forwarding. Additionally, temporal dependen-
cies have to be considered. SMCs are synchronous ex-
ceptions, thus D-NW will hand the control flow to the
secure monitor and wait until it returns. Normally, D-SW
would access shared memory provided by D-NW, thus
potentially modifying its content. To ensure correctness,
we need to forward all of the memory associated with the
SMC right before trapping to D-SW. SyncEmu achieves
this by modifications to the TEE driver of D-NW, that
allow SMC executions to be blocking, keeping the device
in D-NW, until memory has been forwarded to R-SW.
In detail, we introduce a function smc_block () that
waits on an internal variable (similar to a lock) that
is controlled by SyncEmu. When SyncEmu received all
forwarded data, it releases the lock, and the SMC on
the physical device is executed normally. After identify-
ing all occurrences of the SMC instruction in the TEE
driver, the analyst has to add calls to smc_block () and
smc_write_out (SMC_CMD) right before. Similarly,
by adding smc_write_out (SMC_CMD) calls after the
SMC instruction, returning values of D-SW can be ob-
tained. We use this when evaluating SyncEmu’s correct-
ness in Section 4.2.



4. Evaluation

Evaluating rehosting approaches is challenging as both
measuring the ground truth (i.e., original device’s exe-
cution) and identifying metrics to compare the fidelity
are not trivial. In our case, an idea would be to strictly
compare the execution of D-SW and R-SW, however,
access to D-SW (ground truth) is off limits (Section 2).
Instead, we follow the evaluation design described by
Fasano et al. [13] who propose to compare the input and
output behavior of the original device and the rehosting
environment. We compare the observable behavior of D-
SW with the one of R-SW to have an indicator of the
equivalence of their execution. CAs and TAs communicate
via a defined API (Section 2), thus we compare the return
values of these calls. We evaluate SyncEmu along the
following research questions (RQs):

RQ1 Can we use SyncEmu to rehost COTS TZOS
implementations?

RQ2 Does SyncEmu enable the build-up of TA
internal state?

RQ3 Does SyncEmu’s CA-in-the-loop technique

preserve correctness?

To evaluate SyncEmu, we target two TZOS implemen-
tations, namely Linaro’s open-source OP-TEE [25], [29]
and Huawei’s proprietary TrustedCore (TC) running on
Huawei’s P9 Lite smartphones (RQ1). We note that OP-
TEE already runs in QEMU, thus we use it to evaluate our
CA-in-the-loop technique since this setup excludes side
effects because of missing peripheral emulations (RQ3).
We targeted TC to complement recent TEE rehosting
approaches [20] that did not target Huawei devices.

4.1. Rehosting COTS TZOS Implementations.

In this section, we demonstrate SyncEmu’s rehosting
framework (Section 3.1) to emulate Huawei’s proprietary
TZOS implementation TC, addressing RQ1.

Rehosting Process. We take the following steps in
the iterative refinement process to implement a rehosting
environment that enables booting TC.

1) Obtaining the TC Firmware Image. We extract
the TC binary from a storage partition on a rooted Huawei
P9 Lite. Alternatively, TEE firmware can often also be
obtained from update images.

2) Initial Static Analysis. We use Ghidra [28] for
disassembling and reverse engineering parts of the TC
binary. For setting up an initial emulator, we identify the
corresponding instruction set architecture to be ARMv7.
However, Huawei’s P9 Lite is powered by an ARMv8-A
CPU, thus we use the CPU model cortex—a57 running
TC in backward-compatible mode. We found TC’s initial
physical loading address after analyzing code that sets up
page tables for the MMU.

3) Running TC until Failure. We configure
SyncEmu’s minimal bootloader to configure the emulator
accordingly and load TC in memory. After our bootloader,
TC is executed starting at its first instruction. SyncEmu
enables logging for exceptions, basic block translations,
and aborts, thus by observing the output we can identify
error behavior during emulation. In the beginning, we

expect errors after a very short emulation period as our
initial rehosting environment does not handle any periph-
eral interactions.

4) Interpreting and Handling of Errors. Next, we
analyze the output logs to identify the failing instruction
and derive the root cause. We parse the address of the
first instruction leading to a fault, identify the correspond-
ing code blocks in the binary, and focus our efforts on
backtracking the control flow. During our experiments,
looking for aborts and MMIO polling loops turned out
to be valuable starting points.

5) Refinement of Rehosting Environment. We derive
necessary improvements to our rehosting environment and
extend SyncEmu’s callback implementations. Depending
on the observed abort, we identify commonly required
modifications. A data abort usually indicates that the
loading address is wrong (e.g., the faulting instruction
enabled the MMU) or bootloader parameters are missing.
A polling loop indicates that MMIO read instructions
failed due to missing peripheral emulation. A prefetch
abort indicates that the CPU tries to execute memory not
holding valid instructions (e.g., missing hook for secure
monitor callbacks).

We repeat steps three to five until TC boots in the
refined rehosting environment.

Running TrustedCore. We now report on the com-
plexity of our implemented rehosting environment (i.e.,
callbacks and bootloader) for running Huawei’s TC. This
includes concrete solutions for secure monitor and periph-
eral callbacks as well as a minimal bootloader Section 3.1.

We implement a minimal bootloader stub consisting
of only 19 assembler instructions that are executed at
EL3 before jumping to the TC binary. Our emulated
bootloader sets appropriate values in system registers (e.g.,
SCR_EL3, ELR_EL3, SPSR_EL3, and SCTLR_EL1) to
configure S-EL1 for the execution of TC. Additionally,
we fill argument registers (e.g., xO—-x4) necessary for
TC’s boot process. We were not required to pass more
complex bootloader structures. We believe this to be the
case because our targeted TC binary is compiled to only
run on one specific smartphone, thus instead of using
parameters, required values are hardcoded.

When our bootloader is finished, it executes an
eret instruction, jumping to TC’s entry address at
0x36208000. When running, TC tries to access periph-
erals via MMIO. Using SyncEmu’s rehosting framework,
we set hooks at 18 locations to return peripheral values
keeping TC from crashing. Crucially, we were not re-
quired to assign MMIO accesses to specific peripherals
nor understand their functionality in-depth, minimizing
reverse engineering efforts. After observing the first SMC,
we hook the control flow at the exception vector table
and implement a secure monitor callback function. Our
callback interprets the function identifier set by TC in x0
(i.e., the value indicating successful boot), and reads out
TC’s expected return address from x1 required to resume
execution. We pause the emulation and wait for inputs
from the attached device.

4.2. CA-in-the-loop

For SyncEmu we need to deploy agent software run-
ning on the attached smartphone, in order to forward re-



TABLE 1. TOTAL NUMBER OF CA REQUESTS PER TA API
FUNCTION AND CORRESPONDING EQUIVALENT RETURN VALUES IN
PARENTHESES.

API function OP-TEE’s aesTA  TC’s keymasterTA

TEEC_InitializeContext 79 (79) 56 (56)
TEEC_OpenSession 1(1) 56 (56)
TEEC_InvokeCommand 8 (8) 56 (0%)
TEEC_CloseSession 1(1) 56 (56)

quests sent by a CA. We modify the TEE driver implemen-
tation of the attached device to include this functionality.

Modifications to TrustedCore’s TEE Driver. For
TC, we used the corresponding open-source TEE driver
for Huawei P9 Lite devices [21]. The communication
takes place in a ring buffer inside shared memory, whose
location is transmitted to TC by setting a register param-
eter in one of the first SMCs. The ring buffer is divided
into input and output queues, holding messages sent to and
from TC respectively. The current message is referenced
by a 4-byte index at the start of the memory region. Each
message consists of a TC_NS_SMC_CMD struct, indicat-
ing the requested TA UUID, and a pointer referencing a
physical address to a TC_NS_Operation struct. This
struct holds up to four pointers to TC__NS_Parameter
objects for the actual payload (i.e., data sent by a CA).

We deploy SyncEmu’s kernel module on the device,
that provides the function smc_block () to instrument
the execution of SMCs on the device. The module exposes
the file /proc/smc_forwarder to SyncEmu enabling
the transfer of commands and data. Next, we imple-
ment the function smc_write_out (TC_NS_SMC_CMD
xcmd) that is capable of parsing the CA request struct
and extracting all associated shared memory. We iden-
tified that TC’s TEE driver issues SMCs in the file
drivers/hisi/tzdriver/smc.c and add calls to
our implemented functions, thus enabling SyncEmu to
instrument and intercept communication to TC.

In summary, our kernel module consists of around
300 lines of C code and we needed to add three calls
to SyncEmu’s functions in the TEE driver.

Experiments. We conduct experiments for both OP-
TEE and TC to evaluate RQ2 and RQ3. For OP-TEE, we
run a setup with two identical emulators (i.e., we replace
the physical device) and use SyncEmu to synchronize
the execution of the aesTA. This experiment is especially
interesting to answer RQ3 since it excludes side effects
due to missing peripheral emulations. For TC, we use a
Huawei P9 Lite, deploy our kernel module, and use an
Android App that enables us to directly interact with the
on-device CA, requesting functionality from the keymas-
terTA. In each setup, we compare the return values of API
calls to the TA running in D-SW with the return values
of the rehosted TA in R-SW (Section 2). We present our
results in Table 1.

SyncEmu intercepts and forwards a total of 89 and
224 CA requests for our experiment with OP-TEE and
TC, respectively. In both scenarios, SyncEmu’s CA-in-the-
loop technique leads to a successful build-up of internal
TA state (e.g., TAs are loaded and sessions established),
thus answering RQ2. For OP-TEE, we observe identical
return values over all requests, while for TC in 75% of

cases. We identified that the reason for different return
values (marked with *) can be attributed to the lack
of peripheral emulation. TC’s keymasterTA leverages a
proprietary crypto cell [3] for cryptographic operations.
Properly emulating complex peripherals is not in the scope
of SyncEmu and can be a task for future work. We confirm
that SyncEmu’s CA-in-the-loop technique nevertheless
forwards the correct requests by looking at the secure
UART output of our rehosting environment (Listing 1)
and manual debugging. Another indicator for SyncEmu’s
correctness (RQ3) is the fact that in a perfectly emulated
environment (i.e., in our case with OP-TEE), we observe
entirely equivalent behavior.

[2task_keymaster]8/24/2021 3:27:19.176 [error]
TEE_GenerateRandom:
CRYS_RND_GenerateVector failed
[2task_keymaster]8/24/2021 3:27:19.176 [error]
TEE_GenerateRandom:
CRYS_RND_GenerateVector failed
[2task_keymaster]8/24/2021 3:27:19.176 [error]
keyblob_crypto: derive key from kdf
failed, ret=0x00£f0020f
[2task_keymaster]8/24/2021 3:27:19.176 [error]
generate_symmetric_keymaterial: encrypt
privatekey failed, ret = f£££0000
[2task_keymaster]8/24/2021 3:27:19.176 [error]
GenerateSymmetricKey:
generate_symmetric_keyblob failed, ret is
f£££0000
[2task_keymaster]8/24/2021 3:27:19.176 [error]
km_generate_key: GenerateSymmetricKey
failed
[2task_keymaster]8/24/2021 3:27:19.176 [error]
TA_InvokeCommandEntryPoint: keymaster
invoke failed, ret=fff£f0000

Listing 1. Emulator UART output of rehosted keymasterTA instance of
TC. After invoking the generation of a symmetric key, errors occur. The
TA tries to communicate with the crypto cell which is not implemented
in the rehosting environment leading to expected failure.

5. Discussion

5.1. Limitations

In the first place, the main requirement for the usage
of SyncEmu is the availability of a physical smartphone.
Because of the locked-down nature of COTS smartphones,
SyncEmu still comes with some limitations depending on
the specific device. First, for the deployment of the custom
TEE driver, we need the ability to flash custom kernel
software, thus the bootloader of the device needs to be
unlocked. While most vendors allow unlocking the boot-
loader for supporting custom OSes (e.g., GrapheneOS),
the TEE will typically notice this during boot. For exam-
ple, when unlocking the bootloader on Samsung devices
an eFuse is irretrievably burned, marking the device as
untrusted [31], thus potentially limiting communication
with TAs.

Second, we require access to the TEE firmware (e.g.,
TZOS and TA binaries) for rehosting. While for our target
device, we extracted the TEE firmware from the rooted
device, vendors might encrypt (parts of) their firmware
running in the TEE. Consequently, the TEE firmware is
shipped and stored in an encrypted fashion, while the
decryption only happens in secure volatile memory by an
early bootloader stage, making it inaccessible.




Third, services like attestation or cryptography that
may leverage unique secrets stored in hardware elements
(e.g., root of trust) can hinder the implementation of high-
fidelity rehosting environments.

5.2. Future Work

The implementation of SyncEmu’s rehosting environ-
ment takes manual effort by an expert. While it took
us months for the initial implementation of SyncEmu’s
rehosting framework, subsequent extensions with TEE
implementations only required some weeks. Still, when
considering that there currently is no out-of-the-box solu-
tion for TEE rehosting, we believe this to be a justifiable
manual effort. We leave the extension of SyncEmu with
additional TEE implementations for future work.

Furthermore, our evaluation results showed that miss-
ing peripheral emulation prevents SyncEmu from com-
pletely emulating TA services that have heavy hardware
dependencies. Unfortunately, peripherals found on COTS
smartphones are typically proprietary. Without access to
documentation, manually simulating fully functional pe-
ripheral behavior is expected to be not feasible. Instead,
we envision extending SyncEmu’s rehosting framework
with strategies that approximate peripheral behavior at the
MMIO level, as shown by prior work [32].

We see SyncEmu as a tool with multiple use cases
regarding security analyses. For example, one aspect
could be the application of fuzzing to the rehosted TEE
firmware. Fuzzing could allow an in-depth evaluation of
SyncEmu’s CA-in-the-loop technique in regard to im-
proving the reached code coverage and a holistic com-
parison with state-of-the-art fuzzing approaches. We see
multiple options for integrating fuzzing to SyncEmu’s
current design. Challenges are scalability and performance
since SyncEmu’s CA-in-the-loop technique depends on a
physical smartphone. For example, we expect rebooting
the device after a crash to be slow [7]. However, since
SyncEmu runs the TEE firmware in an emulator, snapshot-
based fuzzing might be applicable. Additionally, finding
a good interface for the fuzzer and enabling effective
mutation may be non-trivial. For example, one could feed
fuzzing inputs into CAs running on the smartphone to
trigger TA services in the first place while mutating the
forwarded CA requests before injecting them into the
rehosting environment.

6. Related Work

Trying to dynamically analyze TEE firmware on phys-
ical devices comes with inherent limitations [7], [27] due
to inaccessible debug interfaces and lack of introspection.
While there exists work that identifies security issues in
TEE firmware using static analysis, these either require
heavy reverse engineering [9], [33] or focus on specific se-
curity issues [8]. Currently, the two dominant approaches
for rehosting are pure emulation and hardware-in-the-
loop [13].

In a pure emulation approach [11], no physical hard-
ware is involved. Peripheral interactions are solved by
implementing models mimicking their behavior [14], [19].
The most similar to our work is PartEmu [20] that en-
ables the execution of proprietary TEE firmware in an

emulator. However, their evaluation shows limitations in
building up TA state during fuzzing. SyncEmu tackles
this by its novel CA-in-the-loop technique, thus feeding
highly realistic inputs to rehosted TAs. Unfortunately,
the authors never published their source code, hindering
a direct comparison. In contrast, we make our artifacts
publicly available, fostering future TEE research. Other
research tries to implement tailored emulators targeting
the execution of stand-alone TAs [6], [22]. However, these
are TA-specific and require emulating the custom system
call interface of the TZOS, making the process tedious. In
contrast, SyncEmu runs the TZOS in the emulator, making
a TA-generic solution possible. Furthermore, there exists
research that targets other software layers of the TEE
firmware such as the secure monitor [23], while SyncEmu
is tailored for TAs.

Hardware-in-the-loop approaches forward peripheral
accesses to a physical device [26], [35]. This ensures
higher fidelity but may require partial debugging access
to the original device. SyncEmu uses the forwarding
methodology for its CA-in-the-loop technique, but focuses
on solving software dependencies instead.

7. Conclusion

While most improvements in the field of rehosting
focus on hardware modeling, rehosting TEE implemen-
tations comes with the additional challenge of strong
software dependencies because of the interplay of multiple
components. With SyncEmu, we propose and develop
a potential solution to tackle this challenge and enable
holistic analysis techniques for COTS TAs. We success-
fully rehost and demonstrate our novel CA-in-the-loop
technique targeting a real-world TZOS implementation,
showcasing the practical applicability of our approach.
We believe that SyncEmu is a valuable tool to aid TEE
research and empower analysts to apply techniques such
as fuzzing to proprietary TEE firmware, allowing for
improved vulnerability discovery.

Data Availability

SyncEmu is openly accessible at https://github.com/
syncemu/syncemu.
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