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Abstract—A major drawback of cloud computing used to be
the lack of confidentiality and verifiability of computations,
making it impossible to use public commercial clouds to
work with sensitive code or data. With the availability of
Trusted Execution Environments (TEEs) came the promise of
enabling confidential computations in the cloud. A number of
big Cloud Service Providers (CSP) now supports the deploy-
ment of Confidential Virtual Machines (CVMs) that can be
attested remotely, supposedly guaranteeing verifiable isola-
tion and integrity, and removing potentially compromised or
malicious infrastructure from the system’s Trusted Comput-
ing Base (TCB). In this paper, we investigate this claim and
examine the CVM infrastructure provided by commercial
CSPs regarding the attestability of the TEE hardware and
the entire CVM software stack, and transparency regarding
software provisioned by the CSP. We develop a hierarchy of
attestation levels to explain our findings and trust limitations.
For the services analysed, we observe that many attestation
steps can only partially be verified by the CVM owner.
Thus, running CVMs on these CSPs’ infrastructures does not
allow full TCB reduction through independently verifiable
attestation but requires trust in the CSP to deploy secure
software and to truthfully report attestation data. Complete
protection from infrastructural threats is thus not provided.

1. Introduction

Cloud computing is the backbone of digitalized so-
cieties, supporting today’s cloud-native web service de-
velopment paradigm. Increasingly, also industries that
traditionally operated their own IT environments, e.g.,
telecommunication, manufacturing, and healthcare, are
now moving to the cloud for better scalability, manage-
ability, and cost reduction. However, this trend is ac-
companied by questions about the security and trustwor-
thiness of Cloud Service Providers (CSPs) along with
regulatory concerns about privacy, data protection, and
data sovereignty: “moving to the cloud” involves moving
large amounts of sensitive data, along with some of the
responsibility to protect it, to a third party.

Different forms of Confidential Computing (CC) have
surfaced to address such concerns, with Trusted Execution
Environments (TEEs) [40] such as Intel SGX and TDX,
AMD SEV-SNP, or ARM CCA promising to effectively
take the cloud provider out of the Trusted Computing Base
(TCB). These TEEs provide secure compartments on cloud
servers that can run applications while protecting data in

use from infrastructural threats and enabling the “removal
of even the cloud provider from the Trusted Computing
Base” [14]. At the same time they provide attestation
mechanisms to cryptographically verify that the unmod-
ified application is indeed running in an authentic TEE.
On paper, such a design allows for a drastic reduction of
customers’ dependency on cloud providers to adequately
secure the cloud platform infrastructure – firmware, OS,
and virtualization layers – and leaving only the hardware
vendor that implements a TEE as a root of trust.

While early TEEs for server systems embedded en-
claves into user processes, the current market trend are
Confidential Virtual Machines (CVMs) that place an entire
tenant VM into a TEE. While this approach increases the
TCB within the TEE, it simplifies the deployment of soft-
ware in TEEs and reduces system-call performance over-
heads [2] relative to enclaves, thus lowering the CC adop-
tion hurdle for customers. Consequently, cloud providers
such as Amazon Web Services (AWS), Microsoft Azure,
or Google Cloud Platform (GCP) have recently started
marketing CVM solutions as an easy fix for the security,
privacy, and trustworthiness challenges outlined above.

However, launching and attesting a CVM is a different
beast than the enclave-based CC approach. A VM con-
sists of layers of system software, including firmware,
bootloader, kernel, and guest OS, as well as user space
applications, with many components usually provided by
the CSP. Given this large software stack running inside
the CVM, the issue of trustworthiness comes again into
focus. Effectively removing the infrastructure, i.e., the
CSP, from the customer’s TCB requires 1) an attestation
infrastructure that allows to attest the authenticity of both
the TEE hardware and all the software running inside it,
and 2) transparency for software components provisioned
by the CSP in the CVM, e.g., by supplying the underlying
source code alongside a reproducible build process.

In this paper we examine CVM offerings on public
clouds along these two axes in order to evaluate the level
of trust in the CSP these CC solutions still require. In
particular, we take a close look at the boot process and
provided attestion mechanisms involved in the setup of
AMD SEV-SNP CVMs on popular cloud providers. It
turns out that there are shortcomings that prevent achiev-
ing confidential computing under infrastructural threats. In
many cases this is due to missing attestation infrastructure
or proprietary software components that need to be in-
cluded in the CVM. We make the following contributions:

• We introduce a hierarchy of attestation levels with in-
creasingly stronger guarantees for CVMs and show-



case what could go wrong with partial attestation at
the lower levels of this hierarchy;

• We highlight that, if some components cannot be
verified by the CVM owner independently, some
blind trust in the CSP is still required when deploying
services in commercial clouds;

• We conduct a case study into AMD SEV-SNP as
provided by popular commercial CSPs to assess how
products meet our attestation levels, and we explain
shortcomings in current offerings.

2. Background

2.1. VM-based TEEs

Confidential VMs are enabled by recent technologies
such as AMD Secure Encrypted Virtualization (SEV)-
Secure Nested Paging (SNP) [4], Intel Trust Domain
Extensions (TDX) [25], and ARM Confidential Compute
Architecture (CCA) [6]. While the inner workings of these
mechanisms may differ, they all allow to essentially wrap
an entire VM, including its firmware, OS, and applica-
tions, into a TEE and also attest its authenticity to a third
party via a cryptographic protocol. This contrasts greatly
with enclave-based TEEs, such as Intel SGX, which
provide an isolated execution environment for a trusted
partition of a larger untrusted user space application.

On the other hand, VM-based TEEs are mostly trans-
parent to the VM running inside it except for an adaptation
layer, either in the guest system software or a paravi-
sor [13]. Hence, they can provide CC to larger applica-
tions deployed as VMs without changing application code.
Moreover, unmodified CC can be provided to containers
via micro-VM container runtimes such as Kata [38]. Thus,
CVMs are considered to be more suitable for cloud-based
deployments. Nevertheless, this ease-of-use comes with
an increased TCB in the TEE. This not only increases
the attack surface and risk for vulnerabilities, but also
complicates attestation.

For instance, a recent study on AMD SEV found that
measuring and encrypting even moderately sized portions
of the initial CVM memory leads to prohibitively large
boot times [23]. Also, build reproducibility becomes more
complex the more different software components are com-
bined into the initial VM image. Hence, measuring the
complete VM along with the launch of the TEE is con-
sidered impractical and current CVM architectures instead
follow a staged attestation approach that first creates a root
of trust within the VM firmware. Subsequent attestation
steps are then integrated into the VM boot process, lever-
aging measured/secure boot technologies to incrementally
build a chain of trust for the loaded software modules.

2.2. Measured Boot and Attestation

Even without consideration for TEEs, booting a VM
is a complex process that is composed of several stages.
The first components to run in such a Linux VM are its
firmware, e.g., Open Virtual Machine Firmware (OVMF)
and bootloader, e.g., GRUB. In some cases, such as
with Direct Linux Boot [37], it is possible to skip the
bootloader altogether and boot a kernel directly from the

firmware. Once booted, the kernel extracts and mounts
the initial RAM disk, e.g., initramfs, and executes the
contained init script. Its sole purpose is to mount the actual
root filesystem for the VM containing the OS and user
space applications which is provided as a block device
mapped into VM memory. After mounting this filesystem,
the script changes the root directory to it and launches the
OS, which in turn may start user applications.

The integrity and authenticity of the boot process is
paramount to ensure the trustworthiness of any system.
Measured boot [41] is a common technique to produce
evidence that a computer system has booted securely.
While its implementation may differ between hardware ar-
chitectures, measuring the boot process usually relies on a
fixed and trusted initial firmware stage and a tamperproof
Root of Trust for Measurement (RoTM), such as a Trusted
Platform Module (TPM). The initial firmware stage may
cryptographically measure itself and load subsequent boot
code which, in turn, may continue the measurement pro-
cess and extend the produced measurement results. The
measurement process and storage of results, typically
hashes, is handled by the RoTM, and the authenticity
of results can be verified at a later stage by a third
party. For TEEs, the RoTM is integrated with the TEE
implementation, e.g., in microcode for Intel SGX, or in
a secure co-processor for AMD SEV-SNP, called AMD
Secure Processor (SP). When setting up a TEE instance,
the untrusted system interact with the RoTM through
secure interfaces to create trustworthy measurements of
the instance. For CVMs, measured boot is established by
measuring the guest firmware along with the TEE itself
during setup. For subsequent measurements, a local RoTM
needs to be included to the firmware, e.g., via a virtual
TPM (vTPM). Measurement results can then be certified
by the RoTM and sent to a remote verifier for verification.

3. Problem Statement

This work examines trust relations involved in the
CVM deployment process. To avoid potential confusion,
we first delineate what we mean by “trust” and “trustwor-
thiness” in this context.

Cloud service customers expect CSPs to run their
cloud platform securely, e.g., that best practices are fol-
lowed to prevent compromise by outsiders, customer data
is sufficiently secured from leakage to other tenants, and
policies are in place to curtail insider threats. Depending
on their specific requirements, a tenant needs to perform
a risk analysis before deploying their software at a given
cloud platform given the information they have about
it. This information is often incomplete as most CSPs
run proprietary software to operate their platforms and
customers must inherently rely on the promises of a CSP’s
marketing department for operational aspects that are
opaque to them, while also soft metrics such as reputation,
track record, or popularity may factor into their decision.

Accepting any residual risk, the tenant can then be said
to trust the cloud platform. However, after making the
decision, this trust becomes mandatory as the customer
simply has to rely on the CSP to hold up their end of
the bargain. This trust is also perpetuated blindly until
objective evidence surfaces that it is no longer justified.



We posit that the dual of this blind trust is trust-
worthiness, which allows for continuous risk assessment
by a cloud tenant through evidence of platform security
obtained at run time. Such evidence may come in the
form of attestation reports for software deployed in TEEs
together with the possibility to independently verify the
security of the TCB. The more such run-time evidence is
provided, the greater the trustworthiness of an execution
platform becomes, and the less blind trust is required.

For the CVM case this means that the CSP not only
has to provide the necessary infrastructure to attest the au-
thenticity of all boot stages, but also provide transparency
for the software components provisioned by the CSP to
allow security analysis of the remaining TCB.

This work aims to examine this issue more closely and
proposes a hierarchy of attestation levels for the CVM that
allow to obtain increasing amounts of runtime evidence for
the integrity and authenticity of a CVM, thus allowing to
increase trustworthiness. We then demonstrate the utility
of this metric in an analysis of popular public cloud
platforms offering AMD SEV-SNP functionality judging
the maximum level of trustworthiness achievable by them.

4. System Model

In our system model, a guest owner deploys a CVM
on an infrastructure where potentially other software is
running at the same time, such as other VMs (confidential
or not), monitoring software, etc. The infrastructure is
managed by an infrastructure provider, and should provide
the hardware and software primitives required to run the
CVM in a TEE. Besides, a verifier performs attestation
to make sure that the CVM was deployed and booted
correctly; We refer to the IETF RATS architecture for
a more comprehensive representation of the attestation
infrastructure [10]. Furthermore, an end user interacts with
the CVM to, e.g., deploy workloads and retrieve results. In
general, some interaction between such actors is required
and trust relationships between them may vary according
to the use case. Besides, two or more logical actors can, in
practice, be impersonated by the same party: For example,
when running a CVM on a local machine, all actors may
be played by the owner of that machine. When deploying
a CVM in the cloud, however, all actors are likely unique.
We will discuss this scenario in more detail in Sect. 5.

In this paper, we follow the standard threat model of
TEEs: All software running outside of the CVM is po-
tentially malicious, including the VMM/hypervisor, other
VMs, etc. Note that this is true even when the guest owner
and the infrastructure provider are the same party or trust
each other, since the software running on the infrastruc-
ture might be compromised by remote attackers. Instead,
the TEE manufacturer and any software and hardware
components provided by them are assumed to be secure.
The TEE threat model mainly focuses on confidentiality
and integrity but leaves out availability. Additionally, side
channels and physical attacks are also out of scope.

4.1. The Importance of Remote Attestation

When it comes to TEEs, remote attestation is an essen-
tial step to gain confidence in the deployed CVM, making
sure that, after boot: 1) the CVM is running in a genuine
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and up-to-date TEE, and 2) the CVM is in an expected and
good state, i.e., only trustworthy and measured software
has been loaded. Moreover, attestation is often used to
bind the identity of the CVM to a cryptographic credential,
later used to establish a secure channel for provisioning
secrets and deploying workloads, e.g., via SSH or TLS
connections. Figure 1 shows how this is usually achieved.

After generating an ephemeral key pair (step 1), the
CVM embeds some information about the credential in
the attestation report requested from the TEE hardware
(step 2). This could include, e.g., a hash of the public
ephemeral key as well as a nonce provided by the verifier
for freshness (not shown). The signed attestation report
returned by the TEE hardware (step 3) then includes this
data along with information about the TEE hardware and
measurements of software deployed in the TEE. After re-
ceiving and verifying the report (steps 4 & 5), the verifier
can now be certain that the key is owned by a CVM with
the specific hardware and software configuration matching
the attestation report.

When attestation fails, this binding becomes com-
promised, and the verifier (or other entities) cannot be
sure that they are communicating with a legitimate CVM.
The problem is exacerbated by the complexity of CVM
attestation that might lead to some components being ac-
cidentally skipped during verification. In the next sections,
we describe all steps of CVM attestation and show what
might happen when some of these steps are missed.

4.2. Attestation Levels

Attesting a CVM is not an easy task since we need to
ensure that every part of the boot process is measured
and can be verified. This section identifies five stages
of attestation of a CVM, called Attestation Levels (ALs).
These levels are incremental, meaning that the guarantees
provided at a certain level build upon the levels below. A
visual representation of such levels is provided in Fig. 2.
AL0: No attestation. This is the baseline level where no
attestation is done. As a result, the verifier cannot make
any claims on the state of the CVM and the threat model
is the same as for a regular VM execution environment.
AL1: Attested TEE isolation. In this level, the verifier
has access to the “raw” attestation report signed by the
TEE manufacturer, and is able to independently verify
its integrity and authenticity. This typically involves the
verification of the report’s signature and certificate chain,
which goes up to a root certificate that is self-signed by



the TEE manufacturer. Moreover, the report also contains
some information about the platform’s TCB (e.g., CPU
model, microcode version, etc.), and freshness information
provided by the verifier. This allows the verifier to attest
that the CVM is indeed running in a genuine and up-to-
date TEE, which reduces the threat surface significantly as
the host firmware, OS, and virtualization layer can now be
excluded from the TCB. The verifier can also be sure now
that software running outside of the CVM cannot directly
access data stored inside of it. However, threats specific
to the CVM technology used, e.g., side channel leakage,
or to the software running inside the CVM remain.

AL2: Measured firmware. As mentioned above, remote
attestation is used to establish a secure channel into the
CVM, but AL1 does not give any information about what
software is running at the other end of that channel. A first
step to alleviate this situation is verify the launch mea-
surement contained in the attestation report, which reflects
the memory layout of the CVM at boot time including the
firmware, page metadata and CPU register state. To obtain
evidence for the correct deployment of the firmware, the
verifier needs to validate the launch measurement against
a trusted reference value. That measurement in itself does
not tell anything about the code and data running in the
CVM, hence it is important that the firmware’s source
code is available and can be reproducibly built. After a
successful verification, it can be ruled out that the trusted
firmware has been replaced by a malicious one.

AL3: Measured Kernel. To rule out compromise of later
boot stages, the verifier needs to validate the entire boot
chain that starts from the firmware and goes up to the ker-
nel, (optionally) through a bootloader. This also includes
the initial RAM disk and kernel command-line parame-
ters. By default, these components are not measured by
the TEE and thus not part of the launch measurement.
However, there are several ways to make this attestation
possible, some of which are discussed in Sect. 4.3.

AL4: Fully measured boot. The verification of the mea-
surements done at AL3 stops at early userspace, i.e., right
before the root filesystem is mounted to the CVM. At
the very least, the root filesystem of the CVM containing
OS and application data should be integrity protected, to
prevent loading a malicious version. In case it contains
secrets, it should also be encrypted. The challenge in this
step is to securely provision keys to the CVM only after
a successful AL3 attestation, to prevent leaking the keys
to a compromised CVM. Again, possible implementation
strategies are provided in Sect. 4.3.

After a successful AL4 attestation, the verifier has con-
fidence that the desired system and application software
has been deployed correctly in the CVM. At this point,
the threat model is similar to running the guest system
on a trusted dedicated server and run-time security of the
CVM is under the guest owner’s purview. In particular,
the deployed software may employ security policies to
sanitize untrusted inputs or prevent the loading of addi-
tional, untrusted software. Moreover, further attestation
steps may be initiated by the guest owner, e.g., run-
time attestation of application control-flow integrity, or
attesting the authenticity of attached secure I/O devices.

4.3. Attestation Strategies

Typically, support for AL1 and AL2 attestation is pro-
vided by all TEE manufacturers, via a certificate chain and
a public key infrastructure (for AL1) and a a measurement
of the initial memory layout of the CVM (for AL2). In
both cases, it is often sufficient to verify the attestation
report that can be fetched by the CVM and sent to the
verifier. To reach ALs 3 and 4, instead, additional steps
are needed. Below, we discuss possible approaches.
AL3. A simple strategy to make this attestation possible
leverages Direct Linux Boot to bind kernel measurements
to the firmware, in such a way that the launch measure-
ment in the attestation report also reflects the identity
of kernel components [15]. This can be done by adding
kernel measurements as firmware variables, which will
be loaded into secure memory at boot and measured by
the TEE. Then, the firmware will load and pass control
to the kernel only if its measurements match with the
expected ones stored as variables, aborting otherwise. A
more involved solution involves relying on a vTPM for
measuring the CVM boot chain. On AMD SEV-SNP, this
functionality can be exposed thanks to Virtual Machine
Privilege Levels (VMPLs) [1], where the vTPM executes
in a higher privilege level than the rest of the system. To
bind vTPM quotes to TEE attestation reports, the digest
of the vTPM endorsement key is added as user data in the
TEE report [36]. The verifier, then, has to check both the
report and the quote to verify the trustworthiness of the
CVM. On Intel TDX, instead, a vTPM can be exposed
from a separate trust domain [24]. Additionally, Intel
TDX also provides four Runtime Measurement Registers
(RTMRs) whose value is reflected in the attestation re-
port [26]. These registers are analogous to a TPM’s PCRs,
and can be similarly leveraged by a TDX-aware firmware
to measure boot components.
AL4. To ensure the integrity of the root filesystem, a com-
mon approach is to extend the vTPM measurements up to
the user space with Linux Integrity Measurements Archi-
tecture (IMA) [39]. IMA is a kernel subsystem responsible
for measuring all binaries that are loaded at runtime, and
it supports remote attestation. Measurements are stored in
a measurement file which itself is integrity-protected by
a measurement stored in the TPM, to prevent tampering
from a privileged adversary. When adopting IMA, it is
important to be aware that runtime measurements may be
susceptible to time-of-check-time-of-use attacks [11], and
that there exist so-called measurement gaps, i.e., some
components are not measured.

Another approach relies on protecting the integrity of
the whole filesystem at rest. To this extent, a popular
software solution is dm-verity [31], which provides
integrity protection by verifying the data blocks in a
filesystem against pre-computed hash values, stored as a
Merkle tree on a separate disk. The root of the tree (called
root hash), guarantees integrity of the whole filesystem,
and must protected from tampering. In our attestation flow,
the root hash can be provided as a kernel parameter such
that its integrity can be verified with a AL3 attestation.
Filesystems using dm-verity are mounted as read-only;
To enable both read and write, dm-integrity [30]
can be leveraged instead to (re-)compute HMAC tags for
each sector of the block device. In this case, however,
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a key should be separately provisioned to the kernel
during early userspace. In our CVM scenario, this means
that attestation should be performed during boot. Finally,
dm-integrity can be combined with dm-crypt [29]
to additionally provide encryption.

4.4. Partial Attestation

It should now be clear that attesting a CVM is not a
trivial task. Unlike process-based TEEs such as Intel SGX,
verifying the TEE attestation report alone is necessary
but not sufficient to cover the whole boot process of
the confidential workload. Failing to properly verify one
or more boot stages might cause some attacks to go
undetected, such as injecting malicious code or backdoors
that would compromise the integrity and confidentiality
of the CVM. These kind of attacks can be either local
(e.g., a compromised hypervisor tampering with the root
filesystem) or remote (e.g., a malicious kernel image
downloaded from an untrusted registry). Therefore, partial
attestations might give a false sense of security to guest
owners and end users, who expect that their code and data
is protected when, in reality, this might not be true.

To showcase the severity of partial attestations, we
consider the scenario where the verifier only attests the
CVM up to AL2. Here, a Man-in-the-Middle (MitM)
attack is possible if the CVM loads a malicious OS
(Fig. 3): As the CVM can produce attestation reports with
arbitrary user data, a MitM that controls the CVM OS
can bind the report with a credential owned by the MitM
(step 1). The verifier, when receiving the attestation report
(step 3), can successfully verify that the report comes
from a genuine CVM with the expected firmware (step 4),
but cannot make any claims on the running OS. Failing
to recognize this issue might cause the verifier to bind
the CVM identity to the credential owned by the MitM,
leading to the verifier possibly opening a channel with
the MitM and leak secrets (step 5). What is worse, the
MitM does not even need to run in a CVM, meaning that
all data will be processed in clear. Therefore, although
the verifier has performed a successful AL2 attestation, in
practice the security guarantees obtained are basically the
same as without attestation.

5. CVM Attestation in Public Clouds

Above, we have discussed the different attestation
levels a verifier can achieve when evaluating the authen-
ticity and integrity of a deployed CVM. However, who
exactly plays the role of verifier depends greatly on the
application scenario and the trust relations between the
involved parties. In this work, we focus on a scenario
where a tenant wants to deploy a CVM as guest owner

on a cloud platform, acting as the verifier in the attes-
tation process. Afterwards, attestation results may also
be exposed to end users as well [18]. While different
tenants may have different trust relations with a given
CSP and lower attestation levels may suffice for them in
practice, we assume here that the tenant wants to reduce
the required trust in the infrastructure provider as much
as possible and achieve a high level of trustworthiness for
the CVM solution via attestation.

Here, the measurement reports used during attestation
should ideally be verifiable independently of the CSP.
In particular, attestation reports produced by the TEE
hardware need to be available to the verifier. In addition,
the verifier needs to be able to identify trusted software
deployed in the TEE, i.e., they need to know the corre-
sponding reference measurements for the firmware, kernel,
user applications, etc. A CSP may provide these reference
values so that the authenticity of the deployed software
can be established. However, this results in a notion of
verifiability that still relies on trust in the CSP and in the
security of the deployed software. In principle, a trusted
third party such as Intel Trust Authority [27] could certify
the security of that software and publish the corresponding
reference values, but that just shifts the required trust to
a different entity.

A stronger verifiability without trust entails that the
verifier can inspect the source code of software deployed
in the TEE and obtain the reference measurements via a
reproducible build process. Having access to the source
code allows the verifier to conduct their own security
analysis of the code and judge its trustworthiness. Of
course, if the code is publicly available, this review can
also be performed by the open source community, but this
would again introduce required trust into the picture.

Overall, for our cloud CVM scenario, the tenant wants
to achieve verifiability without trust for as high an attes-
tation level as possible. Even if a high nominal AL can
be achieved with the help of the CSP, still being forced to
trust the CSP blindly for the measurement values and de-
ployed software reduces the trustworthiness. We introduce
the term trustworthy AL to denote the maximum, effective
attestation level the tenant can achieve as a verifier without
trust into the public cloud provider.

6. Exploring the Cloud Landscape

We investigated current CC offerings on public clouds,
focusing on SEV-SNP as the most widely available VM-
based TEE. Our evaluation is solely based on commercial
cloud features under general availability or public preview.
We found that only the three major CSPs, i.e., Microsoft
Azure, GCP and AWS, offer to deploy SEV-SNP CVMs
on demand. We looked for VM-based confidential com-
puting support in other CSPs, but they either supported
plain SEV or only offered single-tenant bare-metal servers
with SEV-SNP hardware. While plain SEV does not pro-
vide integrity protection nor flexible attestation capabili-
ties, bare-metal servers come at much higher costs and
typically require a fixed monthly subscription. Instead,
we were interested in the multi-tenant scenario where
customers can deploy CVMs on demand on a shared
infrastructure, with little to no control over the hypervisor.



AWS Azure GCP

TEE

Firmware

Kernel

Root FS

Nominal AL 4 4 4
Trustworthy AL 2 0 1

= Verifiable w/o trust; = Verifiable w/ trust; = Not verifiable

TABLE 1: AMD SEV-SNP offerings on AWS, Azure and
GCP. This table reflects attestation levels described in
Sect. 4.2 and verifiability with or without trust, resulting
in the maximum nominal AL (with trust in the CSP) and
trustworthy AL (without trust). Results dated 2024-03-26.

As discussed in Sect. 5, our evaluation tried to de-
termine the level of verifiability without trust that can be
achieved on such CSPs. Besides, we also considered the
model where the verifier (partially) trusts the CSP and
relies on provided services and data, such as a custom
attestation report or a proprietary attestation service.

Results are shown in Tab. 1 and based both on public
documentation and direct experiments. Regarding the for-
mer, all references in Sect. 6.1, except Github links, have
been uploaded to the Internet Archive1 to provide a stable
reference. Concerning the latter, our evaluation was made
on 2024-03-26. Since this is a snapshot of the current state
and features of clouds, some of our findings may not hold
in the future. However, our evaluation framework is still
useful to evaluate future offers in the CVM area.

6.1. Results

In our experiments on AWS and GCP, we were able
to fetch a raw attestation report from the AMD SP via the
/dev/sev-guest device, allowing to independently
verify that the guest VM is indeed running in a up-to-
date SEV-SNP TEE. Azure CVMs, instead, only provide
access to an attestation report generated at boot time and
stored in vTPM non-volatile memory. As this report does
not contain any freshness information chosen by the ver-
ifier, the latter cannot distinguish a legitimate attestation
report from a replay attack and must rely on the CSP to
attest that the VM is indeed using SEV-SNP. We tried
to boot an SNP-aware kernel built from the AMDSEV
repository [3], yet we still could not access the AMD SP.

Regarding AL2, only AWS offers an open source
firmware that can be reproducibly built [9]. We success-
fully checked that the attestation report indeed reflects
the correct measurement. Instead, Azure and GCP guests
boot a proprietary firmware whose code cannot be au-
dited. To the best of our knowledge, firmware reference
measurements are also not provided, meaning that the
verifier cannot even compare the measurement in the
attestation report against the expected value. However, we
observed that both Azure and GCP have a secure boot
option that prevents CVMs from booting if the firmware
is corrupted [32], [22], though we could obviously not
experimentally verify this claim. Yet, tenants that are

1. https://www.archive.org

willing to trust their CSP can be confident that a running
firmware was not tampered with by an outsider attacker.

All CSPs allow extending the measurements up to the
kernel via a vTPM. However, on AWS [8] and GCP [20]
the vTPM is implemented in the hypervisor, greatly in-
creasing the TCB. Azure, instead, exposes a vTPM from
within the CVM firmware [35] which, as mentioned be-
fore, cannot be reviewed. Thus, no CSP currently supports
trustworthy attestation of kernel components.

After kernel verification, the chain of measurements
can be extended to the root filesystem via different ap-
proaches (Sect. 4.3). Hence, AL4 is a natural extension
of AL3, provided that the CSP allows for the customiza-
tion or upload of VM images by the guest owner. We
experimentally verified that the former is indeed possible
by installing a custom bootloader and kernel, as well as
changing kernel command-line parameters, e.g., to enable
Linux IMA. Uploading images seems also feasible accord-
ing to public documentation [7], [34], [21], but we did not
verify this. Still, for trustworthy attestation, the integrity
of the root filesystem ultimately relies on the integrity of
the boot chain up to the kernel: If the latter cannot be
verified independently of the CSP, neither can the former.

In summary, all CSPs provide the infrastructure to
perform a full attestation (nominal AL4), but they rely
on either proprietary software or components outside the
TEE TCB, or both. On Azure, a verifier can obtain an
attestation report but cannot verify its freshness, hence
replay attacks are possible and the CSP must be trusted
for all attestation levels (trustworthy AL0). On GCP, one
can fetch dynamic reports, but the firmware cannot be in-
dependently verified (trustworthy AL1). Only AWS allows
to attest an auditable firmware, yet extending the chain of
measurements to later boot stages uses a hypervisor-based
vTPM outside the TEE (trustworthy AL2).

6.2. Discussion

We showed that guest owners still require a significant
amount of trust in the CSPs when using CVM solutions in
the cloud. This goes against the classic TEE threat model,
where the infrastructure is considered untrusted. There are
two reasons for this: 1) CSP code is running inside the
TEE boundary, with no possibility for review by the re-
mote verifier, and 2) the attestation process involves CSP-
managed components. While running CSP code in the
CVM is sometimes necessary (e.g., to configure network
interfaces, mount devices, etc.), it is certainly possible to
increase transparency towards the verifier, as demonstrated
by AWS’ reviewable firmware. The second problem is
mostly caused by a lack of customization options offered
by CSPs. This is somewhat understandable since most
cloud customers are looking for ease of use and “one-click
compliance”, where they are willing to trust the CSP to
perform security checks in their place. For advanced users,
however, more customizability is desirable.

Our evaluation did not focus on userspace software
that runs after booting the root filesystem, such as
cloud-init [12] or CSP-managed software like Azure
Linux VM Agent [33]. These agents take care of VM
configuration and can execute privileged commands, like
installing packages or updating the trusted SSH identities.



Any such operation, if compromised, can thwart the secu-
rity guarantees of CVMs. Hence, it is equally important
to implement hardening measures in the root filesystem
to, e.g., check cloud-init configuration files before
executing them or disable unnecessary software.

Lately, several companies like Anjuna [5], Edgeless
Systems [16], and Enclaive [17] have started offering
their own confidential computing solutions to customers,
providing fully-managed confidential workloads in form
of containers, virtual machines, or both, and supporting
deployments on popular CSPs. Attestation of workloads
is managed by a dedicated attestation service (which can
also run within a TEE) and is therefore transparent to the
customer, who only receives a report indicating whether
or not their deployment is verified. Such solutions can
largely improve user experience and ease the adoption
of confidential computing. However, when it comes to
cloud deployments, they still depend on the CSPs and the
confidential computing features offered by them. There-
fore, besides adding another third party to the trust model,
such solutions cannot increase the trustworthy AL shown
in Tab. 1. Analogously, the same applies to third-party
attestation services such as Intel Trust Authority [27].

A possible solution to the trust problem could leverage
the live migration feature of TEEs to initialize a CVM
locally and then migrate its state to a remote host, where it
continues its execution. Live migration is performed over
a secure channel established between the TEE modules
in both hosts, preserving the confidentiality and integrity
of the CVM. Since the CVM is initialized on a local
platform, the guest owner has full control over its boot
process and could therefore implement a full AL4 attesta-
tion strategy. Live CVM migration is supported by AMD
SEV-SNP and Intel TDX [4], [28]. However, apart from
some technical and organizational challenges (e.g., the
guest owner needs proper TEE hardware to initialize the
CVM), this workflow is currently not supported by any
CSP and thus we did not explore it further.

Finally, we note that CC is still a relatively new
technology and support for recent TEEs such as SEV-
SNP in the cloud has not yet reached maturity. On the
evaluated CSPs, CVMs are currently available in selected
regions only and, on GCP, support is in public preview.
Despite existing limitations, we see many efforts from
CSPs to improve their offering, driven in part by the
open source community and standardization bodies. For
example, Google has recently open-sourced an unofficial
tool to verify the firmware of CVMs running on GCP [19],
which potentially allows reaching a trustworthy AL2.

7. Conclusions

Being marketed as a solution that allows for the
“removal of even the cloud provider from the Trusted
Computing Base” [14], which has caught the attention of
customers who need an additional layer of protection for
intellectual property, sensitive data, or for regulatory com-
pliance in data protection, confidential computing is be-
coming a mainstream technology for cloud-based services.
However, our research shows that, today, the promised
security guarantees are far from reality as cloud providers
still play a crucial role in the deployment and management
of confidential workloads, especially regarding the latest

trend with confidential virtual machines. Yet, customers
that are willing to trust the CSPs can still benefit from
current offerings as a defense-in-depth mechanism for
strong hardware-rooted isolation from other tenants and
the hypervisor. We also notice a joint effort between
cloud providers and organizations such as the Confidential
Computing Consortium and the IETF, as well as the open
source community, to enhance current confidential com-
puting solutions. Here, researchers can play an important
role and nudge actors towards more principled security.
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