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Abstract—Computer systems that operate on volatile energy
sources typically rely on intermittent computing approaches,
which involve checkpointing the system’s state and persisting
a checkpoint to non-volatile memory before the system loses
power, and then restoring this checkpointed state when
the power supply becomes available again. This process
allows for long-running tasks to make progress, but involves
security risks when power interruption is used as an attack
vector. Based on earlier work that secures checkpoints and
checkpoint restoration on the MSP430 MCU, we implement
and evaluate a secure intermittent computing protocol that
relies on the security features of TrustZone on a Cortex-M
MCU to protect the integrity, authenticity, state continuity,
and freshness of checkpointed state. Our results show that
checkpoints can be created or restored in 20–40 ms, de-
pending on workload sizes. To the best of our knowledge,
our work is the first to implement a complete checkpoint
utility for the ARM TrustZone’s secure world.

1. Introduction

Intermittent computing is characterized by short pe-
riods of program execution that are interrupted by re-
boots, commonly due to power outages [21]. Intermittent
computing (ImC) systems are often powered by energy
harvesters, which extract energy from the environment
using a variety of energy sources – e.g., solar, wind, vibra-
tion, or radio – and enable pervasiveness under a deploy
and forget paradigm where no maintenance is required.
Here, batteries are often insufficient as they have a lim-
ited lifetime and pose challenges regarding maintenance
and disposal. Instead, ImC systems usually employ small
energy buffers, capacitors or supercapacitors, determining
their operating cycle: charge, operate, and die.

A challenge in ImC systems is to ensure forward
progress of code execution, with the eventual completion
of tasks. This requires systems to preserve information
about the device state between power cycles and neces-
sitates systems to track time, enable atomic execution of
tasks, prevent wasted computation by correctly predict-
ing remaining operation time and the duration of check-
pointing, and avoid data inconsistencies due to premature
interruption. Different techniques have been proposed to
support this paradigm [21], [26], based either on hardware
extensions, e.g., special memory or transistor technolo-
gies, or on software, e.g., ad-hoc compilers and specific
programming techniques.

However, security aspects of ImC systems are often
not considered. Vulnerabilities and attacks in ImC system
can allow snooping, spoofing a replay of checkpoints,
leading to a disruption of state continuity or to the re-
trieval of secret keys [17]. Specifically under the perva-
sive deployment paradigm, attackers may gain remote or
physical access to unattended devices, e.g., read or replace
storage elements. Still, many embedded platforms provide
some basic security features, such as secure boot, memory
protection, and cryptographic extensions to mitigate these
challenges. Specifically, embedded Trusted Execution En-
vironments (TEEs) [18] such as ARM TrustZone [12]
could provide the necessary security primitives to imple-
ment dependable ImC, which we investigate in this paper.

Starting from the work on the Secure Intermittent
Computing Protocol (SICP) for TI’s MSP430FR5994 mi-
crocontroller [9], [10], this paper presents a secure ImC
solution developed for the STM32U5 microcontroller.
Differently from previous work [3], [9], [10], the entire
security chain of the target platform is considered and no
additional components beyond platform features, such as
tamper-proof memory, are required. To the best of our
knowledge, our work is the first to implement a complete
checkpoint utility for ARM TrustZone’s secure world.

Our target device comes with an ARM Cortex-M33
core, which features ARM TrustZone for Cortex-M. Be-
sides protecting critical applications, the TEE features
are used to provide strong isolation for a small Trusted
Computing Base (TCB) that contains the secure check-
point utility and its related data. Assuming that attackers
can tamper with normal-world software but also with
storage peripherals, we design a checkpointing approach
that relies on the TEE’s hardware keys to achieve state
continuity and to protect checkpoint data so that we can
store checkpoints on external FRAM. Our approach does
not require additional hardware. Our paper makes the
following contributions:

• We conceptualize a secure checkpoint utility for
ARM Cortex-M, which we implemented for the
STM32U5 MCU.

• We report on experiments with different ap-
proaches to storing checkpoints and assess the
device’s lifetime, finally selecting external SPI-
connected Ferroelectric RAM (FRAM) as check-
point storage.

• A SICP-based [10] security solution is designed
considering the full security chain of the target
platform, relying on TrustZone for Cortex-M.



• The performance and overheads of our secure
checkpoint utility are carefully evaluated. We find
that checkpoints can be created or restored in 20–
40 ms, depending on workload sizes.

• Our prototype is provided open-source un-
der an MIT license at https://github.com/ptrchv/
STM32-IntermittentSecurity.

2. Background

ImC systems. Both hardware and software tech-
niques are discussed in the literature to tackle the chal-
lenges of intermittent computing [21], [26].

On the hardware side, circuits are designed for ef-
ficient power supply and time tracking, e.g., using the
discharge time of a dedicated capacitor. Memory archi-
tectures are designed to provide caches for non-volatile
memories (NVMs), such as FRAM, STT-RAM, PLM,
and RRAM. Other solutions concern non-volatile proces-
sors (NVPs) and application-specific integrated circuits
(ASICs).

On the software side, the focus is on efficient pro-
gramming and compiler techniques to preserve atomicity,
avoid data inconsistencies, and reduce overhead when
saving the device state. One common paradigm is splitting
computation into atomic tasks that fit in the capacitor’s
charge. Task execution and checkpoint placement can
be performed statically via compiler optimizations, or
dynamically via timers or runtime checks of the remaining
energy level. Efforts are also spent to reduce overhead for
programmers and allow intermittent execution of unmodi-
fied legacy code. Approximate computing approaches de-
liberately introduce acceptable errors into the computing
process of error-tolerant applications as a trade-off for
energy-efficiency gains [25]. Deep neural network (DNN)
compression is also explored.

MCU Platforms for Secure ImC. A limitation
of custom hardware solutions is that they are not readily
available on the market. Looking at off-the-shelf micro-
controllers (MCUs), the TI’s MSP430FR family is very
common in ImC applications [21], since it features in-
tegrated FRAM memory. TI also provides the “compute
through power loss” utility (CTPL) [19], which allows for
saving CPU and peripheral states before entering a deep-
sleep mode. Regarding security, the MSP430FR5994,
which is used in the SICP studies [9], [10], features an
AES co-processor, a fused JTAG interface to disable de-
bug access, and a Memory Protection Unit (MPU) which
also provides Intellectual Property (IP) encapsulation. IP
encapsulation defines a memory segment where the con-
tained data can only be accessed by code executed in the
segment itself. However, commercial MSP430 processors
do not support TEE functionality, with Sancus [15] being
an FPGA-only research prototype that is not suitable to
implement all aspects of an ImC system.

ARM TrustZone for Cortex-M. In this paper, we
explore ARM TrustZone for Cortex-M [12], which is a
TEE available in low-power MCUs. ARM TrustZone for
Cortex-M provides hardware isolation between a secure
(S) and a non-secure (NS) world, memory-based sub-
division, where code residing in secure address ranges
can access all the device’s memory, while code executed

from non-secure locations can only access non-secure
memory [13].

The device boots from the secure world, and the
security configuration is performed before jumping to
non-secure. Then, the non-secure world can call secure
services from specific entry points located in non-secure
callable (NSC) memory. A reference implementation of
secure services is provided by Trusted Firmware-M [20].

In traditional devices, memory isolation is usually
handled by privileged code (e.g., a Real-Time OS) which
manages the MPU. If an attacker gains access to privileged
execution, the whole system is compromised. Instead, with
TrustZone, access to privileged execution in a non-secure
world cannot compromise secure services due to hardware
isolation. This also has the benefit of reducing the Trusted
Computing Base (TCB) to code residing in secure mem-
ory. Dynamic privilege-based memory isolation becomes
an orthogonal concept in TrustZone system, where the
MCU can be independently configured in each world [11].

3. Related Works

Checkpointing systems [5], [6], [16] for ImC and
relative optimizations [1], [4], [8] are well discussed and
evaluated in the related literature. However, security im-
plications are commonly overlooked.

In [17], the authors present an attacker model where
the attacker has physical access to the device (TI’s
MSP430FR5994) and can retrieve persistent data from
memory, either via an unprotected JTAG interface, or via
sophisticated probing techniques. Security vulnerabilities
in CTPL are discussed, which allow snooping, spoofing,
and replay of checkpoints. Finally, different attacks are
performed against AES128 library of the device to retrieve
the secret key.

These vulnerabilities are addressed by the Secure
Intermittent Computing Protocol (SICP) [9], [10]. The
protocol allows for authenticated checkpoints with multi-
level confidentiality. It also manages the invalidation of
previous checkpoints, to provide freshness against replay
attacks, and atomicity, to prevent an invalid state of the
system due to a power loss. The protocol only requires
keeping the nonce and the secret keys in a small tamper-
free NVM, since the attacker is assumed capable of
reading and writing sections of the internal non-volatile
memory. However, the device does not have tamper-free
memory, which is only simulated using IP encapsulation
features managed by the MPU.

In [3], TrustZone is used on a Cortex-M23 device to
save arbitrary non-secure memory regions in secure world
internal flash, and vice versa. The threat model does not
allow the attacker to read arbitrary non-volatile memory
bypassing the MCU, e.g. using unprotected debug features
or via chip probing techniques. However, the software
solution does not provide a checkpoint utility to restore
the MCU to the previous state and perform intermittent
computations.

SECure Context Saving (SECCS), based on a hard-
ware module, stores the CPU content on a target NVM
while providing confidentiality and integrity [22]. In [7],
a checkpointing policy to determine when to checkpoint
the MCU state is used to minimize the application time
to completion while guaranteeing security.



Contribution to State-of-the-Art. In our ap-
proach, TrustZone for Cortex-M is used to provide strong
isolation for a small (TCB) that contains the secure check-
point utility and its related data. This is an improvement
over the SICP implementation in [10] and [9], which relies
on a weaker isolation from the MPU. TrustZone isolation
is exploited in a similar fashion in [3], but our work also
provides a full checkpoint utility to perform intermittent
computation. Differently from [3], we store and secure
the checkpoint on an external FRAM memory, so that the
lifetime of the system is not severely limited by the wear
of the internal flash, allowing for real-world applications.

Compared to [10] and [9], we relax the attacker ca-
pabilities to prevent access to internal memory, avoiding
the need for tamper-free memory, which is not available
on the considered MCUs. In addition, we highlight the
importance of considering the entire security chain of the
device. For example, [9], [10] do not discussed how an
attacker with full write and read access to the internal
memory could be prevented from modifying the firmware
and accessing the protected secrets, even in the presence
of tamper-free memory. Defending against such powerful
attackers would require secure boot services and tamper-
resistant memory.

4. Objectives, Attacker, Architecture

In the following sections, we implement and evaluate
our approach to secure ImC on the STM32U585AII6Q
with TrustZone. An established approach for protecting
critical control systems with TrustZone is to place critical
logic in the secure world and implement availability sup-
port for this critical logic [23], [24], effectively removing
the normal world from the TCB. Our approach follows this
model and focuses on securely checkpointing and restor-
ing the secure world, yet it remains extensible to provide
ImC capabilities to the normal world. Below we establish
security objectives and define attacker capabilities.

Security Objectives. Our approach aims at achiev-
ing the same security objectives as earlier work on
SICP [10]. In summary, we aim at guaranteeing:

• Information security: integrity, authenticity, and
confidentiality to be assured for checkpointed data.

• Freshness: in order to prevent replay attacks, only
the last valid checkpoint can be restored.

• Atomicity: power loss during checkpoint creation
cannot leave the system in an undefined state upon
startup, since an attacker can exploit this.

• Unclonability: it is not possible to clone the device
from checkpoint data.

Forward progress is currently not assured for a device
under attack at this moment. Related work does suggest
that TrustZone is in principle capable of guaranteeing
notions of progress under system compromise [2].

Attacker Model. We aim to protect against a
strong adversary who can exploit software vulnerabilities
to execute arbitrary code in the non-secure OS and who
is assumed to have physical access to the device to, e.g.,
trigger a power outage or tamper with peripheral storage
elements of the device, including our FRAM peripheral.
We assume that the MCU’s secure boot features and
TrustZone isolation sufficiently protect the secure world

and prevent software manipulation or the extraction of
cryptographic keys from the secure world. Advanced hard-
ware attacks that require opening and manipulating the
MCU package to access the internal memories, as well
as side-channel attacks against the secure world, are out
of scope. Protection against those attacks is subject of
orthogonal research.

Hardware Platform. The MCU used in this work
is the STM32U585AII6Q by STMicroelectronics, pro-
vided with the B-U585I-IOT02A Discovery kit. The mi-
crocontroller features an ARM Cortex-M33, 2 Mbytes of
internal flash memory divided into two banks, and 786
Kbytes of SRAM. The security features of the MCU
relevant to this work are the following:

• ARM TrustZone for Cortex-M.
• MPU for privilege-based memory isolation.
• Random Number Generator (RNG).
• AES module with AES-GCM, 256-bit key size.
• Secure AES module (SAES) for side channel pro-

tection and key wrapping features.
• Readout protection (RDP) configurable on 3 lev-

els, disabling static board configuration (option
bytes) and debug features, and fixing the boot
entry point.

The main limitation of this hardware platform is the
absence of internal FRAM memory. The only non-volatile
internal memory available in the STM32U5 devices is
flash: Each 8 kB memory page is rated for 10.000 erase
cycles, with 256 kB for each bank that can reach 100.000.
This severely limits the lifetime of the device, if a check-
point per capacitor discharge is considered: With frequent
checkpointing and for large workloads and checkpoint
sizes, this lifetime could be reduced to days or weeks.

Due to this reason, this work utilizes an exter-
nal FRAM memory to store checkpoints. The Infineon
CY15B102QN was chosen, featuring a 40MHz SPI inter-
face, 1015 endurance cycles, low power modes, and 2MB
of storage, which can fit two copies of the entire MCU
SRAM. We still utilize the internal flash to store freshness
information, which induces limited wear on the processor:
If a checkpoint is created every second the lifetime of the
memory would still be about 52 years. The 8-pin PDIP
memory chip was placed on a breadboard and connected
via jumper cables to the Arduino pins of the B-U585I-
IOT02A Discovery kit.

5. Implementation

This section presents the secure checkpoint utility for
saving the state of the secure world and discusses its
security properties.

5.1. Memory Layout

The implementation required some changes to the de-
fault memory layout. This was achieved by modifying the
linker script of the secure software image. The customized
layout is shown in Fig. 1.

A FLASH CKP memory area was carved inside the
region of internal flash memory attributed to secure world
(secure flash) to store checkpoint nonces. The size of
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Figure 1. Memory layout of secure world and information block. Associated data (green), plaintext (red) and ciphertext (orange)

this area is 256 kB, since it is the maximum amount
of flash memory that can sustain up to 100.000 erase
cycles. The flash still contains the .data section, which
stores initialized global variables (both global and static
variables) and is copied inside the SRAM at first boot.

The structure of both the .data and the .bss sections,
containing uninitialized global variables, was changed by
adding the .driver, driver buffer, and .conf sub-sections.
The .conf sub-sections are used to store global variables
that contain confidential information. The .driver sub-
sections, instead, are designed to contain global variables
that may change during the execution of the checkpoint
utility (e.g. STM32 Hardware Abstraction Layer (HAL)
drivers and checkpoint utility variables). These are copied
inside the driver buffer sub-sections before the start of the
checkpoint creation procedure. The .driver sub-sections
are also considered confidential. The cryptobuf section,
instead, is a buffer to store the confidential information
when encrypted.

The compile-time variable attribute
attribute ((section(”name”))) can be used to place

the variables inside the .conf or .driver sub-sections. For
third-party code, such as the STM32 HAL driver library,
it is possible to place the variables from the entire object
files inside the right sections via the linker script.

The external SPI memory is logically divided in half,
to have space for two checkpoints. This is necessary to
avoid corruption of the previous checkpoint in case of a
failure during the creation of a new one.

Fig. 1 also shows the information block, which is a
memory area inside bank 1 of the internal flash. The first
32 kB of the information block contain system memory.
This area is immutable and reserved for use by STMicro-
electronics. Among other things, it stores the 256-bit Root
Hardware Unique Key (RHUK) of the device. This key
is not accessible from software but it is directly wired to
the SAES crypto unit. The RHUK is never used directly.
It is used within TrustZone to generate Derived Hardware
Unique Keys (DHUKs), which depend on the TrustZone
state of the SAES module (secure or non-secure) and the
key utilization mode (normal, wrapped, shared).

5.2. Checkpoint Utility

The checkpoint utility is composed of two func-
tions: SAVE and RESTORE. SAVE is used to create and
store new checkpoints in non-volatile memory, while RE-
STORE allows loading the saved state into SRAM when
recovering from a power loss. The pseudocode for these
functions is shown in Algorithm 1 and 2, respectively.
The routines are invoked via system calls, since they
need to run in privileged mode and need to be accessible
from unprivileged software. Upon exit, the RESTORE
utility jumps back to the application code, simulating an
exit from the exception of the SAVE system call, which
generated the restored checkpoint. The SAVE routine can
be invoked periodically or just before the power loss,
depending on the ImC system design.

SAVE. The first operation is to save data from the
.data.driver and .bss.driver sub-sections inside the ded-
icated buffers in the new memory map (Algorithm 1,
lines 1-2). This is required since the routine accesses
the STM32 HAL driver library and some other global
variables during execution, with the risk of checkpointing
an inconsistent state. By placing their copy in the buffers,
their state is preserved from possible changes during
checkpoint operations.

The next operation is the generation of a random 96-
bit nonce, by means of the Random Number Generator,
to guarantee the freshness of the checkpoint (l. 3). The
nonce will also act as the initialization vector (IV) of the
authenticated encryption primitive, i.e., AES GCM.

Subsequently, the cryptographic primitive is called
three times. The first call generates the authentication
tag for the entire .data section, also encrypting the
driver buffer and the .conf sub-section, which are pro-
vided as the plaintext (pt), while the rest of the .data
section is considered associated data (ad) and only au-
thenticated (l. 4-6). The ciphertext (ct) is stored inside the
cryptobuf (7). This partition is also shown in Fig. 1. The
same operations are then performed for the .bss section
(l. 8-11). The last call to the cryptographic primitive is
used to generate the authentication tag for the stack (l. 12-
13). At each invocation of AES GCM, the initialization
vector is increased, preserving the security properties of
the algorithm.



In the next step, tags, non-confidential .data and .bss
sub-sections, cryptobuf, and the stack are saved in the
external memory, at the currently selected checkpoint
location (ckp) (l. 14-15). After this operation, the original
IV is written to secure flash (l. 16). Since the internal
flash memory requires the erasure of the entire 8-kB page
to be rewritten, each IV is saved after the previous one.
The minimum write size for the flash memory is 128 bits
(quadword); since the IV is only 96 bits, the last word
is used to store the address of the checkpoint location in
the external memory (ckp). Only the last nonce stored
in memory is considered valid. For this reason, when the
new nonce is written to flash it invalidates the previous
checkpoint. The MCU vendor does not specify whether
flash writes are atomic, so it must be assumed that a
power loss may result in a corrupted nonce. However,
this does not introduce a security vulnerability because all
checkpoints would be invalidated. Nonetheless, this could
impede forward progress during normal operations.

It is also important to note that the new checkpoint
is visible to the attacker before the invalidation of the
previous one. If a counter was used as IV, instead of an
RNG value, the attacker could remove power before the
new nonce is saved to collect different AES-GCM mes-
sages generated with the same IV. This would introduce
a security vulnerability.

The previous page is erased if the nonce is written at
the beginning of a new flash page (l. 17-19). This allows
the creation of a circular buffer for storing nonces. If a
power failure happens during this operation, the page era-
sure is performed in the RESTORE routine. At this point,
the storage locations for the next nonce and checkpoint are
updated (l. 20-21), and main program execution resumes.

RESTORE. The first operation of the routine is loading
the secret key inside the AES module (Algorithm 2, line
1). This should also be performed at the first system boot,
since the key is also required by the SAVE routine. The
secret key is not saved in plain text in the software image
but is encrypted with the DHUK. The shared key mode
is used to decrypt the secret key with the DHUK and to
load it in the AES module (sharing).

The next step is to retrieve the latest nonce from secure
flash, and the related checkpoint location (l. 2). This is
done by reading the first 128 bits of each flash page to
identify which one is currently used. A binary search is
run on the page to find the latest nonce that was saved.

Non-confidential .data and .bss sub-sections, and the
cryptobuf are restored from the external memory (l. 3).
The cryptobuf is decrypted inside the confidential sub-
sections and driver buffers of the .data (l. 4-7) and .bss (l.
8-11) sections. Authentication tags for the entire .data and
.bss sections are also computed. The stack is restored from
external memory and its authentication tag is generated (l.
12-14). All authentication tags are compared with the ones
retrieved from the external memory (l. 15-18). Data inside
the driver buffers is then copied to its original location (l.
19-20). When the restored nonce is the first one in a new
flash page, the routine checks if the previous page was
erased; otherwise, it is erased now (l. 21-23). Then the
storage locations for the next nonce and checkpoint are
set up (l. 24-25).

Algorithm 1 SAVE
1: driverbuf.data ← .data.drivers
2: driverbuf.bss ← .bss.drivers
3: IV ← generateIV ()
4: ad← .data
5: pt← driverbuf.data|.data.conf
6: tag1, ct← AES GCM(IV, ad, pt)
7: cryptobuf.append(ct)
8: ad← .bss
9: pt← driverbuf.bss|.bss.conf

10: tag2, ct← AES GCM(IV + 1, ad, pt)
11: cryptobuf.append(ct)
12: ad← stack
13: tag3 ← AES GCM(IV + 2, ad)
14: tags← tag1|tag2|tag3
15: writeSPI(tags|.data|.bss|cryptobuf |stack, ckp)
16: writeF lash(IV, ckp)
17: if firstNonceInNewPage() then
18: erasePreviousPage()
19: end if
20: ckp.toggleLocation()
21: flash.setNextNonceSlot()

Algorithm 2 RESTORE
1: unwrapSecretKey(key)
2: IV, ckp← readF lash()
3: .data, .bss, cryptobuf ← readSPI()
4: ad← .data
5: ct← cryptobuf.at(driverbuf.data|.data.conf)
6: tag1, pt← AES GCM−1(IV, ad, ct)
7: driverbuf.data|.data.conf ← pt
8: ad← .bss
9: ct← cryptobuf.at(driverbuf.bss|.bss.conf)

10: tag2, pt← AES GCM−1(IV, ad, ct)
11: driverbuf.bss|.bss.conf ← pt
12: stack ← readSPI()
13: ad← stack
14: tag3 ← AES GCM−1(IV, stack)
15: tags← readSPI()
16: if tags! = tag1|tag2|tag3 then
17: abort()
18: end if
19: .data.drivers← driverbuf.data
20: .bss.drivers← driverbuf.bss
21: if firstNonceInNewPage() then
22: erasePreviousPage()
23: end if
24: ckp.toggleLocation()
25: flash.setNextNonceSlot()

5.3. Security Discussion

The security of the device is based on the security of
the RHUK. Since this key is stored in the flash bank 1
(in system memory), no protection is given from attackers
who utilize chip probing techniques to read the content of
internal flash. By accessing the RHUK and the encrypted
checkpoint key in the software image (also stored in
internal flash), they could retrieve the secret key used to
secure the checkpoints. However, this is mitigated by the
high cost of the instrumentation required for such attacks.



The next step in the chain is to ensure the TrustZone
isolation of the secure world. This is configured in two
steps: via option bytes and by the secure software at boot.
Option bytes are stored in the information block (flash
bank 1) and can be modified with debug access. The
software images can also be read and modified if debug
access is available. Therefore it is necessary to disable the
debug port by setting the Readout Protection Level (RDP),
which is also stored in the option bytes. With RDP=2
debug access is no longer possible.

Once the TrustZone isolation is in place, it is not
possible to access secure memory areas (in both flash and
SRAM), from non-secure software. This means that the
secure software image cannot be read or modified from
non-secure software, ensuring authenticity and confiden-
tiality of both the software instructions and the related
data. Authenticity and confidentiality are also ensured
for the whole SRAM content. In addition, the isolation
prevents non-secure software from accessing the crypto-
graphic keys used to secure the checkpoints. As an imple-
mentation detail, DHUK is used to protect the encrypted
checkpointing key, which is stored in secure flash and
copied in secure SRAM at boot.

The checkpoint is stored in the external SPI memory
by the SAVE routine. As discussed, the secrets used by
the routines are protected, and therefore authenticity and
confidentiality are ensured for the checkpoint. For what
concerns freshness and state continuity, we follow the
SICP approach [10]. The value of the nonce cannot be
tampered with, because it is stored in secure flash. The SPI
interface connected to the external memory is assigned to
the secure world and thus inaccessible to normal-world
software adversaries. Additional protection of software
images can be provided via secure boot.

6. Benchmarks & Evaluation

Our checkpoint utility is evaluated in terms of the
lifetime of the device and computational overhead.

6.1. Device Lifetime

The goal of intermittent computing systems is to en-
able a deploy and forget operational paradigm. Therefore,
the lifetime of the device plays an essential role. The de-
sign choice to achieve this objective is to store checkpoints
in an external FRAM memory, which, differently from
internal flash, is not restricted regarding a limited amount
of write cycles. However, internal flash is still required
to store nonces. Considering a checkpoint area of 256
kB, which is the maximum amount of memory achieving
100,000 write cycles, 128 bit nonces and one checkpoint
per second, the device lifetime becomes about 52 years.

6.2. Performance

The objective of the performance evaluation is to
understand which is the overhead of the SAVE and RE-
STORE routines, which subtract energy from the main
application. Two different evaluations are carried out. The
first one tries to estimate the overall overhead of the SAVE
and RESTORE routines when increasing the memory size
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Figure 2. Comparison of SAVE and RESTORE overhead for varying
application memory size

TABLE 1. BENCHMARK OF SAVE

Operation Cycles Time (ms)

Authenticated encryption 51777 (103745) 3,236 (6,484)
Copy drivers 11366 0,710
Write nonce 20409 (20408) 1,276
IV generation 451 0,028
Page erase* 274 0,017
SPI R/W 245883 (245884) 15,368
Others 275 (277) 0,017
Total 330435 (382405) 20,652 (23,9)

of the application. The second one, instead, focuses on the
overhead of the specific operations inside the routines.
The chosen unit of measure is clock cycles, which can
be converted to milliseconds given the 160 MHz clock
frequency of the MCU.

The test runs the external memory at 20 MHz, since it
was the maximum stable frequency with the used setup.
The DWT cycle counter is read before and after the
monitored operation, and a message is sent via the UART
interface containing the difference. For the evaluation of
the total times, the DWT counter is only read before
exception entry and after exception exit, to avoid ad-
ditional overhead. When measuring single contributions,
the code was changed to add DWT reads and UART
communication inside the routines. Every measurement
was repeated a minimum of ten times and then averaged.

Fig. 2 presents the results of the first evaluation. The
x-axis shows the size of the main application’s memory,
which was simulated by defining an array of increasing
size inside the .bss section. A null memory size indicates
the overhead for saving the state of the checkpoint utility
itself. Two opposite cases were considered: when the
application memory is only authenticated and when it
requires full confidentiality. Overhead increases linearly
with application size for both SAVE and RESTORE op-
erations. In addition, providing data confidentiality results
in additional overhead w.r.t. only authentication. This is
because, according to the AES GCM algorithm design,
not encrypting the data saves processing time. SAVE also
appears to be slower than RESTORE.

Tables 1 and 2 show the overhead for the single
operations for an application size of 2 kB. The values



TABLE 2. BENCHMARK OF RESTORE

Operation Cycles Time (ms)

Authenticated encryption 52077 (104044) 3,255 (6,503)
Copy drivers 11325 0,708
Decrypt key 2697 0,169
Read nonce 586 0,037
Page erase* 274 0,017
SPI R/W 200677 (200675) 12,542
Others 378 (334) 0,024 (0,021)
Total 268014 (319935) 16,751 (19,996)

inside round brackets highlight differences when all the
application memory is considered confidential, while the
ones outside refer to authentication only. Since flash page
erase is performed only when it is completely filled, its
overhead was divided by the number of nonces that fit in
a page, i.e., 512. It is possible to see that the biggest
contributions for both SAVE and RESTORE are given
by authenticated encryption and external memory oper-
ations. Also, the copy of the driver sub-sections results
in significant overhead, but this is probably due to poor
code optimization. The biggest differences between SAVE
and RESTORE regard external memory operations and
the programming of the nonce value in secure flash. Con-
cerning the effect of confidentiality, the only significant
difference is given by the cryptographic primitive.

Interesting observations can be made by comparing
these results with the performance evaluation conducted
for SICP [9]. When providing no security, the MSP430
requires less than one millisecond to both save and restore
checkpoints with sizes ranging from 468 to 3198 bytes.
This is a consequence of using internal FRAM: variables
do not need to be copied since they already reside in non-
volatile memory. The small overhead is mostly due to
saving the peripheral state, a feature supported by TI’s
CTPL utility.

However, when authentication is introduced, the over-
head is in the 20-73 ms range. These values are similar
to what is obtained in our evaluation. Also, in this case,
the MSP430 does not have to perform a memory copy, but
only computes and saves the authentication tag. Therefore,
by subtracting the SPI R/W contribution from our results,
the STM32 hardware shows better performance. Finally,
full confidentiality raises the SICP overhead to 68-380
ms. This is a consequence of additional cryptographic
operations, which also require saving the ciphertext and
the restored plaintext to memory.

In [1], checkpoint approaches supporting non-
contiguous memory allocations and big program sizes
with sparse memory access are tested for a Fast Fourier
Transform (FFT) application. Results achieve a 50 to
150 ms overhead for checkpoint creation. Even if these
approaches target additional functionalities w.r.t. our so-
lution, they achieve comparable overheads without con-
sidering security.

It is important to note, however, that time is not the
best metric for this type of comparison. ImC systems
are constrained in terms of energy, so the best solution
is not the fastest but the most efficient. The SM32U5
MCU was configured with the highest clock frequency
of 160 MHz against the 8 MHz of the MSP430 processor
in [9], likely leading to higher power consumption and

wasting clock cycles while waiting for the completion
of SPI and cryptographic operations. Future work should
focus on analyzing and improving the energy efficiency
of the proposed solution.

7. Conclusion & Future Work

Starting from the SICP protocol [9], [10], implemented
on MSP430FR MCUs, we developed a secure checkpoint-
ing solution on the ARM Cortex-M platform. TrustZone
for Cortex-M is used to provide isolation between a non-
secure world, containing potentially vulnerable application
software, and a secure world, containing secure trusted
services, among which the checkpoint utility itself. Our
implementation uses peripheral SPI FRAM memory to
store checkpoints so as to protect the MCU from wear
effects on the internal flash. Our utility relies on Trust-
Zone’s hardware keys to ensure integrity, confidentiality,
and state continuity of system state in FRAM. We still
rely on a small portion of the internal flash, in secure
world memory, to store nonces that allow us to verify
freshness and continuity, with very limited impact on the
device’s lifespan. Benchmarks are run to measure the
computational overhead of the utility, establishing that the
most demanding operations are the communications with
the external memory and the cryptographic operations. We
expect that our solution can be integrated with approaches
that ensure real-time responsiveness of TrustZone appli-
cations under attack to develop notions of dependability
for intermittent devices, securing emergent smart infras-
tructures, e.g., in smart agriculture or in the energy tran-
sition. Our prototype implementation for checkpointing
and securely storing intermittent state on TrustZone-M
is provided open-source under an MIT license at https:
//github.com/ptrchv/STM32-IntermittentSecurity.

This work faces some limitations that are subject to
future research and implementation efforts. A crucial limi-
tation of our prototype is that confidentiality of the check-
pointed secure-world stack is not provided. However, our
implementation provides authenticity and state continuity
for the entire checkpoint, including the stack. While it
is relatively easy to implement confidentiality protection
for bounded stacks, handling dynamicity in workloads
and stack utilization is difficult and requires additional
implementation effort (cf. Appenix A). Furthermore, the
state of peripherals and the state of non-secure world
are not preserved. In immediate follow-up work, we will
further benchmark our approach and develop a use case
where measuring power consumption and effectiveness of
our solution would be feasible.
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A. Gory Details

A.1. Limitations

A limitation of the current implementation is that
the stack is not encrypted but only authenticated. This
limitation can become a burden for the programmer, who
currently should ensure that no confidential information is
stored inside the stack, breaking the expected confidential-
ity guarantees of TrustZone. The reason for this limitation
is that, due to the varying size of the stack, it is not
possible to define a size for the cryptobuf to fully contain
and encrypt it in one efficient operation. In addition, the
HAL blocking driver for the cryptographic unit does not
allow encryption of the same message in multiple calls.
Therefore, encryption of the stack in different fixed-size
portions would require the generation of multiple au-
thentication tags, increasing the overall complexity of the
solution. We currently do provide authenticity guarantees
for the checkpointed stack since this does not require
the allocation of a buffer for the cipher text. Similar
considerations can be made regarding dynamic memory
allocations inside the heap. However, in this case, the
fragmentation induced by memory deallocation may pose
additional challenges which can be overcome by using
custom allocator functions, for example.

Another important aspect is that interrupts cannot
be fully disabled during the checkpointing routines. The
reason is that the drivers for the AES module and SPI
interface use timeouts based on interrupts from the systick
timer. This could end up with the SAVE and RESTORE
routines being interrupted, leading to inconsistencies in-
side the checkpoint. This could be prevented by carefully
configuring interrupt priorities, or by changing the behav-
ior of the drivers.



For ease of development and testing, some function-
alities are missing from the provided code, which can
trivially be added: No error handling in case of SAVE
or RESTORE failures is implemented and the flash pages
containing the nonces are not erased when they are filled.
Secure boot is also not configured.

A.2. Possible Optimizations

For ease of development and testing, the code devel-
oped for this work lacks some optimization. The main
one is the possibility of using the Direct Memory Access
(DMA) controller to transfer data between the SRAM,
cryptographic unit, and SPI interface. This would allow a
parallelization of the checkpoint operations, leading to a
lower overhead. This should be addressed in further re-
search, also considering the effects on power consumption.
In this regard, the MCU frequency could also be reduced,
to avoid wasted CPU clock cycles when waiting for the
SPI interface and cryptographic unit.

A.3. ARM TrustZone for Cortex-M

TrustZone isolation is managed by different MCU
components [14]. The Implementation Defined Attribution
Unit (IDAU) and the Security Attribution Unit (SAU),
contained in the Cortex-M core, are used to specify the
security attribution (S, NS, or NSC) of address space
regions. The IDAU configuration is vendor-defined, while
the SAU can be programmed in secure world (usually

at boot). In case of conflict, the stricter configuration
prevails. Bus transactions from the core are marked with
the security attribute of the address space region they
access. IDAU and SAU also prevent non-secure code from
accessing secure regions.

However, due to hardware design constraints, the same
peripheral components are mapped twice in the address
space (aliasing) to reside in both secure and non-secure
regions according to default IDAU partitions. Peripherals
can be configured (from secure world only) to accept only
one type of transaction (secure or non-secure), therefore
deciding their security attribution. For memory periph-
erals, such as FLASH and SRAM, some areas can be
attributed to secure and others to non-secure. Gates po-
sitioned between the bus and the peripherals implement
the security checks. The design of peripheral gates and
configuration components are delegated to MCU vendors.

In STM32U5 microcontrollers, TrustZone-aware pe-
ripherals contain TrustZone configuration registers. The
others rely on the Global TrustZone Controller (GTZC)
for their configuration. The STM32U5 MCU also contains
additional bus masters, such as DMA controllers, that have
no visibility on the policies defined in the IDAU and
SAU. This can be a problem if they can be configured
from non-secure world to access secure world regions.
Therefore, they can be exclusively assigned to secure or
non-secure world. Subsequently, the security attribution
of their transactions will be checked by the gates of the
accessed peripherals.


